Advertisement

Journal of Materials Science

, Volume 29, Issue 23, pp 6152–6158 | Cite as

Methodology for the determination of the interfacial properties of brittle matrix composites

  • E. Lara-Curzio
  • M. K. Ferber
Article

Abstract

The interfacial properties of a glass-ceramic matrix composite (SiC/CAS) were determined from single-fibre push-out tests using the interfacial test system. The coefficient of friction, μ, the residual clamping stress, σc, and fibre axial residual stress, σz, were extracted by fitting the experimental stress versus fibre-end displacement curves using the models of Hsueh, and Kerans and Parthasarathy. Using Hsueh's model, the intrinsic interfacial frictional stress (τ=μσc) was found to be 11.1±3.2 MPa, whereas by using Kerans-Parthasarathy's model it was found to be 8.2±1.5 MPa. Comparisons between these models are included, together with a discussion of data analysis techniques.

Keywords

Polymer Data Analysis Brittle Residual Stress Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

σz

Axial fibre residual stress (Pa)

σ*

Effective clamping stress (Pa)

σc

Residual clamping stress (Pa)

σp

Poisson's effect-induced clamping stress (Pa)

σd0

Debond stress in the absence of residual stresses (Pa)

σd

Experimental debond stress (Pa)

σ

Compressive applied stress (Pa)

τ

Interfacial shear stress (Pa)

u

Fibre-end displacement (m)

h

Debond length (m)

r

Fibre radius (m)

Ef

Fibre Young's modulus (Pa)

Em

Matrix Young's modulus (Pa)

vf

Fibre Poisson's ratio (dimensionless)

vm

Matrix Poisson's ratio (dimensionless)

f

Fibre volume fraction (dimensionless)

k

Parameter (dimensionless)

D

Parameter (dimensionless)

μ

Interfacial coefficient of friction (dimensionless)

Gi

Interface toughness (J m−2)

Cm

Load-train compliance (m N−1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Herra-Franco and L. T. Drzal Composites 23 (1991) 2.CrossRefGoogle Scholar
  2. 2.
    A. A. Wereszczak, M. K. Ferber and R. A. Lowden, Ceram. Eng. Sci. Proc. 14(10) (1993) 156.CrossRefGoogle Scholar
  3. 3.
    D. L. Caldwell and D. A. Jarvie, in “33rd International SAMPE Symposium”, Anaheim, CA, 7–11 March 1988.Google Scholar
  4. 4.
    J. I. Eldridge, “Desktop Fibre Push-out Apparatus”, NASA TM-105341 (1991).Google Scholar
  5. 5.
    D. K. Shetty, J. Am. Ceram. Soc. 71 (1988) C107.CrossRefGoogle Scholar
  6. 6.
    R. J. Kerans and T. A. Parthasarathy, ibid. 74 (1991) 1585.CrossRefGoogle Scholar
  7. 7.
    C. Liang and J. W. Hutchinson, Mech. Mater. 14 (1993) 207.CrossRefGoogle Scholar
  8. 8.
    C. H. Hsueh, Mater. Sci. Eng. A154 (1992) 125.CrossRefGoogle Scholar
  9. 9.
    K. T. Faber, S. H. Advani, J. K. Lee and J. T. Tinn, J. Am. Ceram. Soc. 69 (1986) C208.CrossRefGoogle Scholar
  10. 10.
    D. H. Grande, J. F. Mandell and K. C. C. Hong, J. Mater. Sci. 23 (1988) 311.CrossRefGoogle Scholar
  11. 11.
    A. E. Giannakopoulos, “Finite Element Simulation of Fiber Indentation Experiments with Coulomb Friction Interfaces”, Department of Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden (1989).Google Scholar
  12. 12.
    S. K. Mital and C. C. Chamis, JCTRER 13 (1991) 14.Google Scholar
  13. 13.
    M. N. Kallas, D. A. Koss, H. T. Hahn and J. R. Hellmann, J. Mater. Sci. 27 (1992) 3821.CrossRefGoogle Scholar
  14. 14.
    D. B. Marshall, Acta Metall. Mater. 40 (1992) 427.CrossRefGoogle Scholar
  15. 15.
    S-W. Wang and A. Parvizi-Majidi, Ceram. Eng. Sci. Proc. 11 (1990) 1607.CrossRefGoogle Scholar
  16. 16.
    S-W. Wang, A. Khan, R. Sands and A. K. Vasudevan, J. Mater. Sci. Lett. 11 (1992) 739.CrossRefGoogle Scholar
  17. 17.
    T. J. Mackin and F. W. Zok, J. Am. Ceram. Soc. 75 (1992) 3169.CrossRefGoogle Scholar
  18. 18.
    D. S. Beyerle, S. M. Spearing, F. W. Zok and A. G. Evans, J. Am. Ceram. Soc. 75 (1992) 2719.CrossRefGoogle Scholar
  19. 19.
    A. W. Pryce and P. A. Smith, Acta Metall. Mater. 41 (1993) 1269.CrossRefGoogle Scholar
  20. 20.
    I. M. Daniel, G. Anastassopoulos and J. W. Lee, “Ceramic Matrix Fiber Composites Under Longitudinal Loading”, Compos. Sci. Technol. 46 (1993) 105.CrossRefGoogle Scholar
  21. 21.
    C. Cho, J. W. Holmes and J. R. Barber, J. Am. Ceram. Soc. 74 (1991) 2802.CrossRefGoogle Scholar
  22. 22.
    D. B. Marshall and W. C. Oliver, J. Am. Ceram. Soc. 70 (1987) 542.CrossRefGoogle Scholar
  23. 23.
    C-H. Hsueh, M. K. Ferber and A. A. Wereszczak, J. Mater. Sci. 28 (1993) 2227.CrossRefGoogle Scholar
  24. 24.
    C.-H. Hsueh, J. Am. Ceram. Soc. 76(12) (1993) 3041.CrossRefGoogle Scholar
  25. 25.
    P. S. Steif and A. Dollar, ibid. 75 (1992) 1694.CrossRefGoogle Scholar
  26. 26.
    A. Dollar and P. S. Steif, ibid. 76 (1993) 897.CrossRefGoogle Scholar
  27. 27.
    F. S. Acton, “Numerical Methods that Work” (Harper and Row, New York, 1970).Google Scholar
  28. 28.
    T. A. Parthasarathy, P. D. Jero and R. J. Kerans, Scripta. Metall. Mater. 25 (1991) 2457.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • E. Lara-Curzio
    • 1
  • M. K. Ferber
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations