Advertisement

Journal of Materials Science

, Volume 29, Issue 23, pp 6147–6151 | Cite as

Photoresist-free lithography of 3μm wide UO3 lines from amorphous films of uranyl complexes

  • L. B. Goetting
  • B. J. Palmer
  • M. Gao
  • R. H. Hill
Article

Abstract

The solid-state photochemistry of two uranyl complexes has been investigated with the purpose of developing methods for optical lithography of uranium oxide films. The complex, UO2(NCS)2(OP(C6H5)3)2, is photosensitive in the solid state, undergoing loss of both NCS ligands to yield UO2(OP(C6H5)3)2 as the final photoproduct. Films of this material were easily patterned by photolithography. The complex, UO2(OP(C5H7O2)2, was also photosensitive and decomposed with no apparent intermediate to yield films of uranium oxide (δ-UO3). This process was also shown to be compatible with optical lithography by the patterning of δ-UO3 on silicon surfaces.

Keywords

Oxide Polymer Silicon Uranium Solid State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. W. Boyd and R. B. Jackman, “Photochemical Processing of Electronic Materials” (Academic Press, London, 1992) Ch. 4.Google Scholar
  2. 2.
    A. Heuberger, Microelectron. Eng. 5 (1986) 3.CrossRefGoogle Scholar
  3. 3.
    Idem, ibid. 3 (1985) 535.CrossRefGoogle Scholar
  4. 4.
    R. A. Serway, “Physics for Scientists and Engineers”, 2nd Edn (Saunders College, 1986).Google Scholar
  5. 5.
    B. J. Palmer, A. Becalska and R. H. Hill, J. Photochem. Photobiol. A Chem. 57 (1991) 457.CrossRefGoogle Scholar
  6. 6.
    B. J. Palmer, A. Becalska, R. Hader and R. H. Hill, Polyhedron 10 (1991) 877.CrossRefGoogle Scholar
  7. 7.
    A. Becalska, R. J. Batchelor, F. W. B. Einstein, R. H. Hill and B. J. Palmer, Inorg. Chem. 31 (1992) 3118.CrossRefGoogle Scholar
  8. 8.
    B. J. Palmer, A. Becalska, T. W. H. Ho and R. H. Hill, J. Mater. Sci. 28 (1993) 6013.CrossRefGoogle Scholar
  9. 9.
    D. G. Bickley, R. H. Hill and C. I. Horvath, J. Photochem. Photobiol. A Chem. 67 (1992) 181.CrossRefGoogle Scholar
  10. 10.
    T. W. H. Ho, S. L. Blair, R. H. Hill and D. G. Bickley, ibid. 69 (1992) 229.CrossRefGoogle Scholar
  11. 11.
    F. A. Hart and J. E. Newbury, J. Inorg. Nucl. Chem. 28 (1966) 1334.CrossRefGoogle Scholar
  12. 12.
    A. E. Comyns, B. M. Gatehouse and E. Wait, J. Chem. Soc. (1958) 4655.Google Scholar
  13. 13.
    G. J. Ferraudi, “Elements of Inorganic Photochemistry” (Wiley InterScience, New York, 1988).Google Scholar
  14. 14.
    A. D. Kirk, Coord. Chem. Rev. 39 (1981) 225.CrossRefGoogle Scholar
  15. 15.
    H. I. Schlesinger, H. C. Brown, J. J. Katz, S. Archer and R. A. Lad, J. Am. Chem. Soc. 75 (1953) 2446.CrossRefGoogle Scholar
  16. 16.
    H. Gilman, R. G. Jones, E. Bindschadler, D. Blume, G. Karmas, G. A. Martin, Jr, J. F. Nobis, J. R. Thirtle, H. L. Yale and F. A. Yoeman, ibid. 78 (1956) 2791.Google Scholar
  17. 17.
    B. Marciniak and G. E. Buono-Core, J. Photochem. Photobiol. A Chem. 52 (1990) 1.CrossRefGoogle Scholar
  18. 18.
    M. J. Rand, J. Electrochem. Soc. 120 (1973) 686.CrossRefGoogle Scholar
  19. 19.
    K. Ohwada, Spectrochim. Acta 25a (1970) 1035.CrossRefGoogle Scholar
  20. 20.
    M. Tsuboi, M. Terada and T. Shimanouchi, J. Chem. Phys. 36 (1962) 1301.CrossRefGoogle Scholar
  21. 21.
    H. R. Hoekstra and S. Siegel, J. Inorg. Nucl. Chem. 18 (1961) 154.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. B. Goetting
    • 1
  • B. J. Palmer
    • 1
  • M. Gao
    • 1
  • R. H. Hill
    • 1
  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations