Advertisement

Journal of Materials Science

, Volume 29, Issue 23, pp 6139–6146 | Cite as

Newtonian flow process in polycrystalline silicon carbides: diffusional creep or Harper-Dorn creep?

  • J. N. Wang
Article

Abstract

Some previous studies on hot-pressed and sintered SiC polycrystalline materials have been reexamined. Mechanical data and microstructures strongly suggest that the Newtonian creep behaviour observed in these SiC materials was induced by a dislocation process operating in Harper-Dorn creep, rather than by diffusional creep as concluded before. The supporting evidence for this suggestion includes extensive development of dislocation substructures, no dependence of creep rate upon grain size, and the measured creep rates being far faster than those predicted by the model of diffusion creep, but consistent with those estimated by the model of Harper-Dorn creep.

Keywords

Microstructure Carbide Silicon Carbide Creep Rate Supporting Evidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. R. N. Nabarro, in “Report of a Conference on the Strength of Solids”, Bristol (Physical Society, London, 1948) p. 75.Google Scholar
  2. 2.
    C. Herring, J. Appl. Phys. 21 (1950) 437.CrossRefGoogle Scholar
  3. 3.
    R. L. Coble, ibid. 34 (1963) 1679.CrossRefGoogle Scholar
  4. 4.
    J. C. Harper and J. E. Dorn, Acta Metall. 5 (1957) 654.CrossRefGoogle Scholar
  5. 5.
    P. Yavari, D. A. Miller and T. G. Langdon, ibid. 30 (1982) 871.CrossRefGoogle Scholar
  6. 6.
    F. A. Mohamed, K. L. Murty and J. W. Morris, Metall. Trans. 4 (1973) 935.CrossRefGoogle Scholar
  7. 7.
    G. Malakondaiah and P. Rama Rao, Acta Metall. 29 (1981) 1203.CrossRefGoogle Scholar
  8. 8.
    Idem, Mater. Sci. Eng. 52 (1982) 207.CrossRefGoogle Scholar
  9. 9.
    J. Fiala, J. Novotny and J. Cadek, ibid. 60 (1983) 195.CrossRefGoogle Scholar
  10. 10.
    J. Novotny, J. Fiala and J. Cadek, Acta Metall. 33 (1985) 905.CrossRefGoogle Scholar
  11. 11.
    P. J. Dixon-Stubbs and B. Wilshire, Philos. Mag. 45A (1982) 519.CrossRefGoogle Scholar
  12. 12.
    T. G. Langdon, ibid. 47A (1982) L29–33.Google Scholar
  13. 13.
    J. Wolfenstine, Trans. Br. Ceram. Soc. 89 (1990) 175.Google Scholar
  14. 14.
    O. A. Ruano, J. Wolfenstine, J. Wadsworth and O. D. Sherby, Acta. Metall. 39 (1991) 661.CrossRefGoogle Scholar
  15. 15.
    J. N. Wang, J. Am. Ceram. Soc. (1994) in press.Google Scholar
  16. 16.
    W. B. Banerdt and C. G. Sammis, Phys. Earth Planet. Inter. 41 (1985) 108.CrossRefGoogle Scholar
  17. 17.
    J.-P. Poirier, J. Peyronneau, J. K. Gesland and G. Brebec, ibid. 32 (1983) 273.CrossRefGoogle Scholar
  18. 18.
    S. Beauchesne and J.-P. Poirier, ibid. 61 (1990) 182.CrossRefGoogle Scholar
  19. 19.
    J. N. Wang, B. E. Hobbs, A. Ord, T. Shimamoto and M. Toriumi, Science (1994) in press.Google Scholar
  20. 20.
    J. N. Wang, Mater. Sci. Eng. A183 (1994) 267.CrossRefGoogle Scholar
  21. 21.
    J. N. Wang and M. Toriumi, ibid. (1994) in press.CrossRefGoogle Scholar
  22. 22.
    J. N. Wang, Scripta Metall. Mater. 29 (1993) 1505.CrossRefGoogle Scholar
  23. 23.
    Idem, ibid. 29 (1993) 733.CrossRefGoogle Scholar
  24. 24.
    O. A. Ruano, J. Wadsworth and O. D. Sherby, Acta Metall. 36 (1988) 1117.CrossRefGoogle Scholar
  25. 25.
    J. N. Wang, Scripta Metall. Mater. 29 (1993) 1267.CrossRefGoogle Scholar
  26. 26.
    T. G. Langdon and P. Yavari, Acta Metall. 30 (1982) 881.CrossRefGoogle Scholar
  27. 27.
    J. N. Wang and T. G. Langdon, Acta. Metall. 42 (1994) 2487.CrossRefGoogle Scholar
  28. 28.
    C. H. Carter, Jr, R. F. Davis and J. Bentley, J. Am. Ceram. Soc. 67 (1984) 409.CrossRefGoogle Scholar
  29. 29.
    Idem, ibid. 67 (1984) 732.CrossRefGoogle Scholar
  30. 30.
    J. E. Lane, C. H. Carter Jr and R. F. Davis, ibid. 71 (1988) 281.CrossRefGoogle Scholar
  31. 31.
    R. D. Nixon and R. F. Davis, ibid. 75 (1992) 1786.CrossRefGoogle Scholar
  32. 32.
    H. Tanaka and Y. Inomata, Yogyo-Kyokai-Shi 93 (1985) 45.Google Scholar
  33. 33.
    G. Grathwohl, T. H. Reets and F. Thummler, Sci. Ceram. 11 (1981) 425.Google Scholar
  34. 34.
    S. Prochazka and P. C. Smith, in “Investigation of ceramics for high temperature turbine vanes”, AD-779-053 (G. E. Corporate R and D, P.O. Box 8, Schenectady, New York 1 2301), April 1974.Google Scholar
  35. 35.
    A. Djdemel, J. Cadoz and J. Philibert, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, UK, 1981) p. 381.Google Scholar
  36. 36.
    P. L. Farnsworth and R. L. Coble, J. Am. Ceram. Soc. 49 (1966) 264.CrossRefGoogle Scholar
  37. 37.
    T. L. Francis and R. L. Coble, ibid. 51 (1968) 115.CrossRefGoogle Scholar
  38. 38.
    P. Marshall and R. B. Jones, Powder Metall. 12 (1969) 193.CrossRefGoogle Scholar
  39. 39.
    M. S. Seltzer, Ceram. Bull. 56 (1977) 418.Google Scholar
  40. 40.
    V. Krishnamachari and M. R. Notis, Mater. Sci. Eng. 27 (1977) 83.CrossRefGoogle Scholar
  41. 41.
    R. C. Gifkins, J. Aust. Inst. Met. 18 (1973) 137.Google Scholar
  42. 42.
    J. N. Wang, Philos. Mag. A (1994) in press.Google Scholar
  43. 43.
    D. P. Hasselman and H. D. Batha, Appl. Phys. Lett. 2 (1963) 111.CrossRefGoogle Scholar
  44. 44.
    I. N. Frantsevich, V. A. Kravets, L. O. Egoroy, K. V. Nazarenko and V. Z. Sushkevich. Sov. Powder Metall. Met. Ceram. (Engl. Transl.) 10 (1973) 229.CrossRefGoogle Scholar
  45. 45.
    I. N. Frantsevich, V. A. Kravets, K. V. Nazarenko and V. Z. Sushkevich, ibid. 12 (1973) 654.CrossRefGoogle Scholar
  46. 46.
    I. N. Frantsevich, V. A. Kravets and K. V. Nazarenko, ibid. 14 (1975) 679.CrossRefGoogle Scholar
  47. 47.
    H. Posen and J. A. Bruce, in “Silicon Carbide”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan (University of South Carolina Press, Columbia, SC, 1974) p. 238.Google Scholar
  48. 48.
    G. S. Corman, J. Am. Ceram. Soc. 75 (1992) 3421.CrossRefGoogle Scholar
  49. 49.
    F. W. Crossman and M. F. Ashby, Acta Metall. 23 (1975) 425.CrossRefGoogle Scholar
  50. 50.
    J. D. Hong and R. F. Davis, J. Am. Ceram. Soc. 63 (1980) 546.CrossRefGoogle Scholar
  51. 51.
    J. D. Hong, R. F. Davis and D. E. Newbury, J. Mater. Sci. 16 (1981) 2485.CrossRefGoogle Scholar
  52. 52.
    M. H. Hon and R. F. Davis, ibid. 14 (1979) 2411.CrossRefGoogle Scholar
  53. 53.
    M. H. Hon, R. F. Davis and D. E. Newbury, ibid. 15 (1980) 2073.CrossRefGoogle Scholar
  54. 54.
    K. Maeda, Yogyo-Kyokai-Shi 94 (1986) 784.CrossRefGoogle Scholar
  55. 55.
    J. H. Schneibel, R. L. Coble and R. M. Cannon, Acta Metall. 29 (1981) 1285.CrossRefGoogle Scholar
  56. 56.
    J. N. Wang, J. Struct. Geol. 16 (1994) 961.CrossRefGoogle Scholar
  57. 57.
    W. R. Cannon and T. G. Langdon, J. Mater. Sci. 23 (1988) 1.CrossRefGoogle Scholar
  58. 58.
    A. M. Kosevich, in “Dislocations in Solids”, edited by F. R. N. Nabarro, Vol. 1 (North-Holland, Amsterdam, 1979) p. 33.Google Scholar
  59. 59.
    E. Schreiber and N. Soga, J. Am. Ceram. Soc. 49 (1966) 342.CrossRefGoogle Scholar
  60. 60.
    H. D. Dietze, Z. Physik. 132 (1952) 107.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. N. Wang
    • 1
  1. 1.Earthquake Research InstituteThe University of TokyoTokyoJapan

Personalised recommendations