Advertisement

Journal of Materials Science

, Volume 29, Issue 23, pp 6123–6130 | Cite as

Development of porous zirconia spheres by polymerization-induced colloid aggregation — effect of polymerization rate

  • M. J. Annen
  • R. Kizhappali
  • P. W. Carr
  • A. McCormick
Article

Abstract

Polymerization-induced colloid aggregation is used to synthesize spheres of narrow size distribution which are porous aggregates of ZrO2 colloids. Variation of the reaction pH has been investigated to determine the optimum rate of polymerization of the urea-formaldehyde resin. At the optimum rate, a colloid packing structure is formed where a balance of high porosity and high strength of the aggregates is achieved. This optimum coincides with the maximum yield of the ∼5 μm sintered (polymer-free) particles. Particles synthesized at pH values below the optimum are mechanically weak; some are hollow spheres. Variation of the pore structure, and thus colloid packing structure, is elucidated by nitrogen adsorption and apparent density measurements. Differences on either side of the optimum pH are related to the efficiency of polymer-bridge formation between colloids.

Keywords

Porosity Zirconia Pore Structure Maximum Yield Density Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Blackwell and P. W. Carr, J. Chromatogr. 596 (1992) 27.CrossRefGoogle Scholar
  2. 2.
    U. Trudinger, G. Muller and K. K. Unger, ibid. 535 (1990) 111.CrossRefGoogle Scholar
  3. 3.
    P. W. Carr, E. F. Funkenbusch, M. P. Rigney, P. L. Coleman, D. A. Hanggi and W. A. Schafer, US Pat. 5015 373 (1991).Google Scholar
  4. 4.
    M. J. Wax and R. K. Grasselli, EP Pat. 0490226 A1 (1991).Google Scholar
  5. 5.
    R. K. Iler and H. J. McQueston, US Pat. 4010242 (1977).Google Scholar
  6. 6.
    A. Bleier and R. M. Cannon, Mater. Res. Symp. Proc. 73 (1986) 71.CrossRefGoogle Scholar
  7. 7.
    T. W. Healy and V. K. La Mer, J. Phys. Chem. 66 (1962) 1835.CrossRefGoogle Scholar
  8. 8.
    G. J. Fleer, and J. M. H. M. Scheutjens, Croat. Chem. Acta 60 (1987) 477.Google Scholar
  9. 9.
    M. A. C. Stuart, Polym. J. 23 (1991) 669.CrossRefGoogle Scholar
  10. 10.
    A. Elaissari and E. Pefferkorn, J. Colloid Interface Sci. 141 (1991) 522.CrossRefGoogle Scholar
  11. 11.
    K. Mühle, Colloid Polym. Sci. 263 (1985) 660.CrossRefGoogle Scholar
  12. 12.
    F. Lafuma, K. Wong and B. Cabane, J. Colloid Interface Sci. 143 (1991) 9.CrossRefGoogle Scholar
  13. 13.
    F. Csempesz and S. Rohrsetzer, Colloids Surf. 31 (1988) 215.CrossRefGoogle Scholar
  14. 14.
    J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 83 (1979) 1619.CrossRefGoogle Scholar
  15. 15.
    Idem, ibid. 84 (1980) 178.CrossRefGoogle Scholar
  16. 16.
    Idem, Macromolecules 18 (1985) 1882.CrossRefGoogle Scholar
  17. 17.
    L. Sun, M. J. Annen, F. Lorenzano, P. W. Carr and A. V. McCormick, J. Colloid Interface Sci. 163 (1994) 464.CrossRefGoogle Scholar
  18. 18.
    R. W. Stout and H. J. Leibu, EP Pat. Appl. 0341 556 (1989).Google Scholar
  19. 19.
    J. I. De Jong and J. De Jonge, Rec. Trav. Chim. 53 (1953) 139.Google Scholar
  20. 20.
    H. G. B. De Jong, in “Colloid Science”, Vol. II, edited by H. R. Kruyt (Elsevier, New York, 1949) p. 253.Google Scholar
  21. 21.
    F. F. Lange, J. Am. Ceram. Soc. 67 (1984) 83.CrossRefGoogle Scholar
  22. 22.
    E. Liniger and R. Raj, ibid. 70 (1987) 843.CrossRefGoogle Scholar
  23. 23.
    F. F. Lange, ibid. 72 (1989) 3.CrossRefGoogle Scholar
  24. 24.
    L. Montanaro and A. Negro, J. Mater. Sci. 26 (1991) 4511.CrossRefGoogle Scholar
  25. 25.
    M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein and P. Meakin, Nature 339 (1989) 360.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. J. Annen
    • 1
  • R. Kizhappali
    • 1
  • P. W. Carr
    • 1
    • 2
  • A. McCormick
    • 1
  1. 1.Department of Chemical Engineering and Material ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Chemistry and Institute for Advanced Studies in Bioprocess TechnologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations