Journal of Materials Science

, Volume 29, Issue 23, pp 6115–6122 | Cite as

R-curve behaviour of PZT ceramics near the morphotropic phase boundary

  • Sunggi Baik
  • Soo Min Lee


The mechanical failure of PZT ceramics was characterized by measuring R-curves for compositions near and at the morphotropic phase boundary (MPB) where tetragonal and rhombohedral phases coexist in equal quantities. The R-curve behaviours (an increasing fracture toughness with crack extension) were identified by indentation-fracture testing and they were analysed to determine the key parameters. The fracture toughness of the PZT ceramics consisted of three different terms, representing particular microstructural processes in front of advancing cracks, that is, intrinsic cleavage, 90° domain switching and microcracking. Their relative contributions to an overall crack-extension resistance varied with the length of the advancing crack and, more importantly, with the compositions of the PZT. In the compositional range where the tetragonal phase was dominant, the R-curves were determined by domain switching and microcracking. However, the compositional dependency of the fracture toughness was due to the microcracking mechanism. On the other hand, in regions rich in rhombohedral phases, the R-curves were essentially determined by domain switching in the crack-tip area. The R-curves characterized by the domain-switching mechanism were insensitive to the compositional variation near the MPB. Our results also demonstrated that R-curve analysis could be used to probe further into the microstructural responses of materials in front of advancing cracks and to quantify them particularly in systems like PZT where several different toughening processes compete with each other.


Fracture Toughness Tetragonal Phase Crack Extension Morphotropic Phase Boundary Compositional Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Herbert, in “Ferroelectric transducers and sensors” (Gordon and Breach, New York, 1982).Google Scholar
  2. 2.
    A. J. Moulson and J. M. Herbert, in “ Electroceramics” (Chapman and Hall, London, 1990).Google Scholar
  3. 3.
    B. Jaffe, W. R. Cook and H. Jaffe, in “Piezoelectric ceramics” (Academic Press, London, 1971).Google Scholar
  4. 4.
    S. W. Freiman, L. Chuck, J. J. Mecholsky, D. L. Shelleman and L. J. Storz, in “Fracture mechanics of ceramics”, Vol. 8, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1986) p. 175.CrossRefGoogle Scholar
  5. 5.
    K. Mehta and A. V. Virkar, J. Amer. Ceram. Soc. 73 (1990) 567.CrossRefGoogle Scholar
  6. 6.
    A. G. Evans, ibid. 73 (1990) 187.CrossRefGoogle Scholar
  7. 7.
    M. V. Swain and R. H. J. Hannink, in “Advances in ceramics”, Vol. 12, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984).Google Scholar
  8. 8.
    R. W. Steinbrech, A. Reichl and W. Schaarwachter, J. Amer. Ceram. Soc. 73 (1990) 2009.CrossRefGoogle Scholar
  9. 9.
    K. Okazaki, Amer. Ceram. Soc. Bull. 63 (1984) 1150.Google Scholar
  10. 10.
    R. C. Pohanka, S. W. Freiman, K. Okazaki and S. Tashiro, in “Fracture mechanics of ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York. 1983) p. 356.Google Scholar
  11. 11.
    R. C. Pohanka, P. L. Smith and S. W. Freiman, in “Electronic ceramics”, edited by L. M. Levinson (Marcel Dekker, New York, 1988) p. 51.Google Scholar
  12. 12.
    R. F. Cook, B. R. Lawn and C. J. Fairbanks, J. Amer. Ceram. Soc. 68 (1985) 604.CrossRefGoogle Scholar
  13. 13.
    H. Ouchi, K. Nagano and S. Hayakawa, ibid. 48 (1965) 630.CrossRefGoogle Scholar
  14. 14.
    S. Baik, S. M. Lee and B. S. Min, in “Fracture mechanics of ceramics”, Vol. 9, edited by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai and V. Ya. Shevchenko (Plenum, New York, 1992).Google Scholar
  15. 15.
    S. L. Shwartz and T. R. Shrout, Mater. Res. Bull. 17 (1982) 1245.CrossRefGoogle Scholar
  16. 16.
    A. I. Kingon and J. B. Clark, J. Amer. Ceram. Soc. 66 (1983) 253.CrossRefGoogle Scholar
  17. 17.
    ASTM Standard C20-46 (American Society of Testing and Materials, Philadelphia, 1969).Google Scholar
  18. 18.
    J. C. Bruce, W. W. Gerberich and B. G. Koepke, in “Fracture mechanics of ceramics”, Vol. 4, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978).Google Scholar
  19. 19.
    L. Hanh, K. Uchino and S. Nomura, Jpn. J. Appl. Phys. 17 (1978) 637.CrossRefGoogle Scholar
  20. 20.
    P. Chantikul, G. R. Anstis and B. R. Lawn, J. Amer. Ceram. Soc. 64 (1981) 539.CrossRefGoogle Scholar
  21. 21.
    R. F. Krause, ibid. 71 (1988) 338.CrossRefGoogle Scholar
  22. 22.
    J. Homeny and W. L. Vaughn, ibid. 73 (1990) 2060.CrossRefGoogle Scholar
  23. 23.
    G. G. Pisarenko, V. M. Chushko and S. P. Kovalev, ibid. 68 (1985) 259.CrossRefGoogle Scholar
  24. 24.
    J. W. Hutchinson, Acta Metall. 35 (1987) 1605.CrossRefGoogle Scholar
  25. 25.
    G. Arlt and P. Sasko, J. Appl. Phys. 51 (1980) 4956.CrossRefGoogle Scholar
  26. 26.
    P. G. Lukuta, J. Amer. Ceram. Soc. 72 (1989) 933.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Sunggi Baik
    • 1
  • Soo Min Lee
    • 1
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations