Advertisement

Journal of Materials Science

, Volume 29, Issue 23, pp 6097–6103 | Cite as

Preparation, characterization and wear behaviour of TiNx-coated cermets obtained by plasma-enhanced chemical vapour deposition

  • I. Endler
  • E. Wolf
  • A. Leonhardt
  • A. Beger
  • V. Richter
Article

Abstract

Commercial cermet inserts were coated with titanium nitride by plasma-enhanced chemical vapour deposition (PECVD) using a pulsed direct current (d.c.) glow discharge. The influence of the coating parameters on the deposition rate, on the layer composition, on the layer-substrate interface, on the structure and on the microhardness of the layers was investigated for deposition temperatures in the range 500–700 °C. The adhesive strengths, and some mechanical properties, of the coated cermets were characterized by scratch tests, by friction wear investigations and by measurement of the transverse rupture strength. The wear behaviour was examined in the cutting tests. It was found that TiNx-coatings deposited with a sufficiently high deposition rate and plasma power density have a low oxygen and chlorine content and that they are nearly stoichiometric. The layers usually have a columnar structure with a 〈200〉 texture. A granular, equiaxed structure was observed within a small range of deposition conditions. In interrupted and continuous turning tests with steel and grey cast iron, a high cutting performance of the coated inserts, which depended on the coating thickness and on the deposition temperature, was achieved.

Keywords

Cast Iron Deposition Temperature Wear Behaviour Titanium Nitride Plasma Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Malle, VDI-Z 134 (1992) 61.Google Scholar
  2. 2.
    P. Ettmayer and H. Kolaska, Metall. 43 (1989) 742.Google Scholar
  3. 3.
    J. E. Sundgren and H. T. G. Hentzell, J. Vac. Sci. Technol. A 4 (1986) 2259.CrossRefGoogle Scholar
  4. 4.
    K. Bartsch, A. Leonhardt, E. Wolf, M. Schönherr and M. Seidler, J. Mater. Sci. 22 (1987) 3032.CrossRefGoogle Scholar
  5. 5.
    M. Kato, H. Yoshimura and Y. Fujiwara, Proceedings of the 12th International Plansee Seminar, 8–12 May 1989, Reutte, Tirol, Austria, edited by H. Bildstein and H. M. Ortner (Verlagsanstalt Tyrolia, Innsbruck, 1989) pp. 93–107.Google Scholar
  6. 6.
    H. Arnold, “Chemisch dampfablagerung” (Akademie-Verlag, Berlin, 1982) p. 34.Google Scholar
  7. 7.
    D. C. Shah and D. G. Bhat, Surface Modification Technol. IV, edited by T. S. Sundarshan, D. G. Bhat, M. Jeandin (The Minerals, Metals and Materials Society 1991) p. 79.Google Scholar
  8. 8.
    A. Raveh, Mater. Sci. Engng. A 167 (1993) 155.CrossRefGoogle Scholar
  9. 9.
    Y. Ishii, H. Ohtsu, T. Adachi, H. Ichimura and K. Kobayashi, Surf. Coat. Technol. 49 (1991) 279.CrossRefGoogle Scholar
  10. 10.
    S. Veprek, C. Brendel and H. Schäfer, J. Cryst. Growth 9 (1971) 266.CrossRefGoogle Scholar
  11. 11.
    B. Arnold and I. Endler, to be submitted to Fresenius J. Anal. Chem. 349 (1994) 249.CrossRefGoogle Scholar
  12. 12.
    G. Meunier, J. P. Manaud and P. Grall, Mater. Sci. Engng. B 18 (1993) 303.CrossRefGoogle Scholar
  13. 13.
    J. Laimer, H. Störi and P. Rödhammer, J. Vac. Sci. Technol. A 7 (1989) 2952.CrossRefGoogle Scholar
  14. 14.
    U. C. Oh and J. H. Je, J. Appl. Phys. 74 (1993) 1692.CrossRefGoogle Scholar
  15. 15.
    C. C. Jiang, T. Goto and T. Hirai, J. Alloys Compounds 190 (1993) 197.CrossRefGoogle Scholar
  16. 16.
    V. Valvoda, R. Cerny, R. Kuzel, L. Dobiasova, J. Musil, V. Poulek and J. Vyskocil, Thin Solid Films 170 (1989) 201.CrossRefGoogle Scholar
  17. 17.
    A. J. Perry, J. Vac. Sci. Technol. A 6 (1988) 2140.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • I. Endler
    • 1
  • E. Wolf
    • 1
  • A. Leonhardt
    • 1
  • A. Beger
    • 2
  • V. Richter
    • 2
  1. 1.Institute of Solid State and Materials Science DresdenDresdenGermany
  2. 2.Fraunhofer Institute of Ceramic Technology and Sintered MaterialsDresdenGermany

Personalised recommendations