Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6604–6610 | Cite as

Al2O3-5 wt% Al composites by ICP sintering of synthesized precursor

  • S. N. Sinha
  • S. H. Kim
Papers

Abstract

Microstructure developments during the milling of Al2O3-5wt% Al composite powder in an attritor and subsequent sintering of the precursor by inductively coupled argon plasma are presented. After 4 h of milling the precursor contained tubular ceramic-metal and uniform ceramic regions. With an increase in the milling period the ceramic-metal regions broke into smaller and almost globular regions, and the smaller regions became dispersed in the ceramic regions. After 8 h of milling the composite powder had a stable microstructure and contained 0.25–0.35 μm clusters. The sintered composite was > 99.7% dense and its microstructure consisted of ceramic-metal regions which were dispersed in the matrix of a ceramic region. The sizes of ceramic grains in ceramic-metal regions and the ceramic regions were 0.3–2.2 and 0.8–1.8 μm, respectively. Many ceramic grains in ceramic-metal regions were separated by 30–100 nm wide metal layers. The microstructure of the ceramic-metal region showed many features of interpenetrating phase composites. The Knoop and Vickers microhardnesses of the composites at 5–10 N loads were 410–450. Under 10 N loads in Knoop and Vickers microhardness tests the crack length was 11±3 and 3 ± 0.5 μm, respectively. The crack propogation mechanisms in the indented areas are discussed.

Keywords

Microstructure Milling Crack Length Metal Layer Composite Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Sigl and H. E. Exner, Acta Metall. 37 (1989) 1847.CrossRefGoogle Scholar
  2. 2.
    F. F. Lange, B. V. Velamakanni and A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 383.CrossRefGoogle Scholar
  3. 3.
    N. Claussen, N. A. Travitzky and S. Wu, Ceram. Engng. Sci. Proc. 11 (1990) 806.CrossRefGoogle Scholar
  4. 4.
    M. Manoharan, L. Ellis and J. J. Lewandowski, Scripta Metall. 24 (1990) 1515.CrossRefGoogle Scholar
  5. 5.
    A. J. Pyzik, A. A. Aksay, M. Sarikaya, in Proceedings of Ceramic Microstructures '86, Roles of Interfaces, edited by J. A. Pask and A. G. Evans (Plenum Press, NY, 1987) p. 45.CrossRefGoogle Scholar
  6. 6.
    H. J. Edrees and A. Hendry, in “Interfacial behavior in ceramic matrix composites with metal particles” (Butterworth, London, 1989) p. 297.Google Scholar
  7. 7.
    A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 187.CrossRefGoogle Scholar
  8. 8.
    J. A. Cornie, MRS Bull. 16 (1991) 27.CrossRefGoogle Scholar
  9. 9.
    D. A. Weirauch Jr, J. Mater. Res. 3 (1988) 729.CrossRefGoogle Scholar
  10. 10.
    C. G. Levi, G. J. Abbaschian and R. Mehrablan, Met. Trans. 9A (1989) 697.Google Scholar
  11. 11.
    E. Breval, M. K. Aghajanian and S. L. Luszcz, J. Amer. Ceram. Soc. 73 (119) 2610.Google Scholar
  12. 12.
    P. G. Karandikar and T. Chou, J. Mater. Sci. 26 (1991) 2573.CrossRefGoogle Scholar
  13. 13.
    A. G. Gensing, G. Burger, E. Luce, N. CLaussen, S. Wu and N. A. Travitzky, Ceram. Engng. Sci. Proc. 11 (110) 806.Google Scholar
  14. 14.
    S. Wu and N. Claussen, J. Amer. Ceram. Soc. 74 (1991) 2460.CrossRefGoogle Scholar
  15. 15.
    F. H. Froes and C. Suryanarayana, JOM 6 (1989) 12.CrossRefGoogle Scholar
  16. 16.
    B. H. Kear, L. E. Cross, J. E. Keem, R. W. Siegel, F. Spaepen, K. C. Taylor, E. L. Thomas and K. N. Tu, “Research opportunities for materials with submicron sized microstructures” (NMAB-454, National Academy Press, 1989).Google Scholar
  17. 17.
    S. L. Lehoczky, J. Appl. Phys. 49 (1978) 5479.CrossRefGoogle Scholar
  18. 18.
    I. A. Aksay and M. Sarikaya, “Processing of synthetic hierarchically structured ceramic-based materials”, Presented at the Symposium of “Hierarchically structured materials”, MRS, Fall 1991 Meeting, Boston, Dec. 2–5 (1991).Google Scholar
  19. 19.
    S. L. Lehoczky, Phys. Rev. Lett. 41 (1978) 1814.CrossRefGoogle Scholar
  20. 20.
    D. R. Clarke, J. Amer. Ceram. Soc. 75 (1992) 735.CrossRefGoogle Scholar
  21. 21.
    D. C. Henderson, A. J. Pyzik, I. A. Aksay and W. E. Snowden, J. Amer. Ceram. Soc. 72 (1989) 775.CrossRefGoogle Scholar
  22. 22.
    M. I. Mendelson and M. E. Fine, J. Amer. Ceram. Soc. 57 (1974) 154.CrossRefGoogle Scholar
  23. 23.
    M. S. Newkirk, H. D. Lesher, D. R. White, C. R. Kennedy, A. W. Urquart and T. D. Claar, Ceram. Engng. Sci. Proc. 8 (1987) 879.CrossRefGoogle Scholar
  24. 24.
    S. H. Kim and S. N. Sinha, Ceram. Engng. Sci. Proc. 13 (1992) 855.Google Scholar
  25. 25.
    E. Sweet and S. N. Sinha, Unpublished work.Google Scholar
  26. 26.
    Ceramic Source (American Ceramic Society) 8 (1992) TD37.Google Scholar
  27. 27.
    C. A. Kotecki, M.S. Thesis, Northwestern University (1987).Google Scholar
  28. 28.
    J. S. Kim and D. L. Johnson, Amer. Ceram. Bull. 62 (1983) 620.Google Scholar
  29. 29.
    K. Upadhya, Ceram. Bull. 67 (1988) 1691.Google Scholar
  30. 30.
    J. D. Hansen, R. Rustin, M. H. Teng and D. L. Johnson, J. Amer. Ceram. Soc. 75 (1992) 1129.CrossRefGoogle Scholar
  31. 31.
    S. M. Bhaduri and F. H. Froes, JOM 43 (1991) 16.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. N. Sinha
    • 1
  • S. H. Kim
    • 1
  1. 1.CEMM DepartmentUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations