Journal of Materials Science

, Volume 29, Issue 24, pp 6587–6591 | Cite as

Effect of MnO, CaO and nitrogen on the alkaline durability of soda-lime silicate glasses

  • K. Morita
  • A. Suganuma
  • A. Makishima


MnO containing soda-lime silicate glasses were vitrified and nitrogen was introduced into them. The prepared glasses were subject to density measurement and alkaline durability tests. MnO addition caused poorer alkaline durability in 2N NaOH solution at 82°C. Needle-like precipitations were observed on the MnO containing glass surface after 96 h durability tests. Glass components were found to dissolve selectively in the alkaline solution in the order SiO2 > CaO > MnO. The density of the obtained glasses increased linearly with increasing amount of nitrogen content in the glasses. A considerable improvement in alkaline durability of the glasses by nitrogen addition was observed, and its effect was larger for the MnO-free glasses.


Nitrogen Polymer Precipitation SiO2 Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Biryukovitch and Y. L. Biryukovitch, Stroit Materialy 2 (1961) 18.Google Scholar
  2. 2.
    A. J. Majumdar and J. F. Ryder, Glass Technol. 9 (1968) 78.Google Scholar
  3. 3.
    J. Jones, Glass Ind. 6 (1977) 26.Google Scholar
  4. 4.
    F. R. Bacon and F. C. Ragon, J. Am. Ceram. Soc. 42 (1959) 199.CrossRefGoogle Scholar
  5. 5.
    Y. Suzuki, Seramikkusu 11 (1976) 604.Google Scholar
  6. 6.
    A. J. Majumdar, J. M. West and L. J. Larner, J. Mater. Sci. 12 (1977) 927.CrossRefGoogle Scholar
  7. 7.
    L. J. Larner, K. Speakman and A. J. Majumdar, J. Non-Cryst. Solids 20 (1976) 43.CrossRefGoogle Scholar
  8. 8.
    K. Inoue, O. Matsuda, M. Daimon and R. Kondou, Yogyokyokaishi 88 (1980) 88.Google Scholar
  9. 9.
    M. Nogami and Y. Moriya, ibid. 85 (1977) 448.Google Scholar
  10. 10.
    K. Kamiya, S. Sakka and Y. Tatemichi, J. Mater. Sci. 15 (1980) 1765.CrossRefGoogle Scholar
  11. 11.
    K. Sakai, Seramikkusu 23 (1988) 214.Google Scholar
  12. 12.
    A. Paul and A. Youssefi, J. Mater. Sci. 13 (1978) 97.CrossRefGoogle Scholar
  13. 13.
    A. Makishima and T. Shimohira, J. Non-Cryst. Solids 38, 39 (1980) 661.CrossRefGoogle Scholar
  14. 14.
    G. H. Frischat and K. Sebastian, J. Am. Ceram. Soc. 68 (1985) C305.CrossRefGoogle Scholar
  15. 15.
    A. Makishima, M. Mitomo, H. Tanaka, N. Ii and M. Tsutsumi, in “Proceedings of the 56th Annual Meeting of the Ceramic Society of Japan” (The Ceramic Society of Japan, Tokyo, 1981) p. 47.Google Scholar
  16. 16.
    S. Sakka, K. Komori, H. Kozuka, T. Kokubo and N. Sugimoto, Rivista della Staz. Sper. Vetro 6 (1986) 75.Google Scholar
  17. 17.
    M. Rajaram and D. E. Day, J. Am. Ceram. Soc. 70 (1987) 203.CrossRefGoogle Scholar
  18. 18.
    B. C. Bunker and G. W. Arnold, ibid. 70 (1987) 425.CrossRefGoogle Scholar
  19. 19.
    J. W. Wald, D. R. Messier and E. J. Deguire, Int. J. High Technol. Ceram. 2 (1986) 65.CrossRefGoogle Scholar
  20. 20.
    H. Ohta and Y. Suzuki, Am. Ceram. Soc. 57 (1978) 602.Google Scholar
  21. 21.
    R. Wusirika, J. Am. Ceram. Soc. 74 (1991) 454.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Morita
    • 1
  • A. Suganuma
    • 1
  • A. Makishima
    • 1
  1. 1.Faculty of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations