Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6581–6586 | Cite as

Superplastic behaviour of a ceramic-based kappa/alpha Fe-10Al-1.9C material

  • C. K. Teo
  • O. A. Ruano
  • J. Wadsworth
  • O. D. Sherby
Papers

Abstract

A fine microstructure has been developed in a Fe-10Al-1.9C material made from rapidly solidified powders. The compacted material had a microstructure containing about 50 vol% kappa phase (Fe3AlCx) and 50 vol% alpha phase. The creep behaviour of the material was investigated using tension and compression change in strain rate tests and elongation to failure tests. Stress exponents of 2–3 were obtained over a wide range of strain rates, and an average activation energy for creep of 245 kJ mol−1 was determined. A maximum elongation to failure of 1120% was obtained at 900°C. The tensile ductility as a function of strain rate was found to follow the same behaviour of other ceramic materials wherein the elongation to failure decreases sharply with an increase in strain rate.

Keywords

Polymer Microstructure Activation Energy Ductility Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. D. Sherby, T. Oyama, D. W. Kum, B. Walser and J. Wadsworth, J. Metals 37 (1985) 50.Google Scholar
  2. 2.
    O. A. Ruano, L. E. Eiselstein and O. D. Sherby, Metall. Trans. 13A (1982) 355.CrossRefGoogle Scholar
  3. 3.
    K. Lohberg and W. Schmidt, Arch. Eisen. 11 (1937) 607.Google Scholar
  4. 4.
    A. Ball and M. M. Hutchinson, Metal Sci. J. 3 (1969) 1.CrossRefGoogle Scholar
  5. 5.
    K. A. Padmanabhan and G. J. Davies, “Superplasticity” (MREZ, Springer, Berlin, 1980).CrossRefGoogle Scholar
  6. 6.
    O. D. Sherby and J. Wadsworth, “Deformation, Processing, and Structures”, edited by G. Krauss (ASM, Metals Park, OH, 1984) p. 355.Google Scholar
  7. 7.
    O. Oikawa, Tech. Rep. Tohoku Univ. 48 (1983) 9.Google Scholar
  8. 8.
    W. Koster, Z. Metall. 39 (1948) 1.Google Scholar
  9. 9.
    W. J. Kim, J. Wolfenstine, O. A. Ruano, G. Frommeyer and O. D. Sherby, Metall. Trans. 23A (1992) 527.CrossRefGoogle Scholar
  10. 10.
    S. Sagat and D. M. R. Taplin, Metal. Sci. 10 (1976) 94.CrossRefGoogle Scholar
  11. 11.
    J. Pilling and N. Ridley, in “Superplasticity in Aerospace”, edited by H. C. Heikkenen and T. R. McNelley (The Metallurgical Society, Warrendale, PA 1988) p. 183.Google Scholar
  12. 12.
    O. D. Sherby and J. Wadsworth, Progr. Mater. Sci. 33 (1989) 169.CrossRefGoogle Scholar
  13. 13.
    W. J. Kim, J. Wolfenstine and O. D. Sherby, Acta Metall. Mater. 39 (1991) 199.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. K. Teo
    • 1
  • O. A. Ruano
    • 2
  • J. Wadsworth
    • 3
  • O. D. Sherby
    • 4
  1. 1.Ordnance Development and EngineeringSingapore
  2. 2.Centro Nacional de Investigaciones Metalúrgicas, CSICMadridSpain
  3. 3.Chemistry and Materials ScienceLawrence Livermore National LaboratoryLivermoreUSA
  4. 4.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations