Journal of Materials Science

, Volume 29, Issue 24, pp 6551–6560 | Cite as

Kinetic microhardness measurements of sialon-based ceramics

  • A. L. Yurkov
  • N. V. Jhuravleva
  • E. S. Lukin


The conventional procedure of microhardness testing consists in applying a fixed load on an indentor and measuring the square of the indent under the microscope. The method of kinetic microhardness (registration of the depth of penetration of an indentor as a function of load) reveals new features of mechanical characteristics of the surface of brittle materials. The investigated sialon-based ceramics demonstrate unrelaxed hardness from 5–13 GPa and elastic relaxation up to 60%–63%. Analysis of the surface layers was made in ranks of the Meyer's equation. The value of the coefficient, N (Meyer's index), of the best investigated materials was found to be 2, varying from 0.92–2.10.


Polymer Surface Layer Brittle Material Processing Mechanical Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. I. Bulyichev and V. P. Alekhin, “Testing of materials by continuous intrusion of indentor” (Moscow, Mashinostrogenic, 1991), 224 p. (in Russian).Google Scholar
  2. 2.
    A. G. Evans and E. A. Charles, J. Am. Ceram. Soc. 59 (1976) 371.CrossRefGoogle Scholar
  3. 3.
    B. R. Lawn, A. G. Evans and D. B. Marshall, ibid. 63 (1980) 574.CrossRefGoogle Scholar
  4. 4.
    B. R. Antis, P. Chantikul, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 539.CrossRefGoogle Scholar
  5. 5.
    P. Mirazano and J. S. Moya, Ceram. Int. 10 (1984) 147.CrossRefGoogle Scholar
  6. 6.
    J. L. Loubert, J. M. Georges, O. Machishini and J. Meille, Trans. ASTMJ. Tribol. 106 (1984) 43.CrossRefGoogle Scholar
  7. 7.
    H. Buckle, in “Science of Hardness Testing and its Research Applications” (ASM, Metals Park, OH, 1971) pp. 453–94.Google Scholar
  8. 8.
    P. M. Sargent and T. F. Page, Proc. Brit. Ceram. Soc. 26 (1978) 209.Google Scholar
  9. 9.
    A. P. Ternovsky, V. P. Alekhin, V. N. Skvortsov, Y. V. Malov and A. S. Artemov, in “New in the Sphere of Microhardness Testing” (Moscow, Nauka, 1974) (in Russian) pp. 71–83.Google Scholar
  10. 10.
    A. P. Ternovsky, V. P. Alekhin and S. I. Bulyichcev, Metallophysica 44 (1973) 354 (in Russian).Google Scholar
  11. 11.
    I. V. Gridneva, Y. V. Mitman and V. N. Trefilov, “Defects of Structure of Semiconductors”, Proceedings of the Conference, Novosibirsk, Nauka, 1970, p. 79 (in Russian).Google Scholar
  12. 12.
    B. R. Lawn and M. S. Swain, J. Mater. Sci. 10 (1975) 113.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid. B. R. Lawn and M. S. Swain, J. Mater. Sci. 10 (1975) 1049.CrossRefGoogle Scholar
  14. 14.
    S. Palmqvist, Jernkontors Ann. 5 (1957) 300.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. L. Yurkov
    • 1
  • N. V. Jhuravleva
    • 1
  • E. S. Lukin
    • 1
  1. 1.Department of CeramicsMendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations