Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6505–6512 | Cite as

Sinter forging of zirconia toughened alumina

  • Y. J. He
  • A. J. A. Winnubst
  • H. Verweij
  • A. J. Burggraaf
Papers

Abstract

Sinter forging experiments have been carried out on powder compacts of zirconia toughened alumina (ZTA) Ceramics Alumina-15 wt% zirconia was prepared by a gel precipitation method and calcined at temperatures of 900 or 1100°C. Full densification of ZTA ceramics was obtained within 15 min at 1400°C and 40 MPa. A homogeneous microstructure can be observed with an alumina grain size of 0.7 μm and a zirconia grain size of 0.2 μm. Almost no textural evolution occurred in the microstructure. During sinter forging the densification behaviour of the compacts was improved by an effective shear strain, for which values of more than 100% could be obtained. As a result of the shear deformation the densification of ZTA in the α alumina phase stage shifted to lower temperature. During pressureless sintering the γ to α alumina transformation temperature was dependent of the preceding calcination temperature, while during sinter forging this phase transformation was independent of calcination temperature and took place at a lower temperature.

Keywords

Microstructure Zirconia Powder Compact Shear Strain Shear Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Venkatachari and R. Raj, J. Amer. Ceram. Soc. 70 (1987) 514.CrossRefGoogle Scholar
  2. 2.
    M. N. Rahaman and L. C. De Jonghe, ibid. 69 (1986) 53.CrossRefGoogle Scholar
  3. 3.
    F. F. Lange, ibid. 66 (1983) 396.CrossRefGoogle Scholar
  4. 4.
    F. F. Lange and M. Metcalf, ibid. 66 (1983) 398.CrossRefGoogle Scholar
  5. 5.
    A. G. Evans, ibid. 65 (1982) 497.CrossRefGoogle Scholar
  6. 6.
    Keizo Uematsu, Masayori Miyashita, Jinyoung Kim and Nozomu Uchida, ibid. 75 (1992) 1016.CrossRefGoogle Scholar
  7. 7.
    A. J. A. Winnubst, W. F. M. Groot Zevert, G. S. A. M. Theunissen and A. J. Burggraaf, Mater. Sci. Engng A109 (1989) 215.CrossRefGoogle Scholar
  8. 8.
    J. S. Reed, T. Carbone, C. Scott and S. Lukasiewicz, in “Processing of Crystalline Ceramics,” edited by H. Palmour III, R. F. Davis and T. M. Hare (Plenum, New York, 1978) pp. 171–80.CrossRefGoogle Scholar
  9. 9.
    Koji Tsukuma and Kuniyoshi Ueda, J. Amer. Ceram. Soc. 68 (1985) C4.Google Scholar
  10. 10.
    K. Nakajima and T. Masaki, “Advanced in Ceramics”. Vol. 24B, Science and Technology of Zirconia III, edited by S. Sōmiya, N. Yamamoto and H. Hanagida, (American Ceramics Society, Columbus, OH, 1988) pp. 625–633.Google Scholar
  11. 11.
    N. Claussen and J. Jahn, J. Amer. Ceram. Soc. 61 (1978) 94.CrossRefGoogle Scholar
  12. 12.
    G. Orange, G. Fantozzi, P. Homerin, F. Thevenot, A. Leriche and F. Cambier, “Advances in Ceramics.” Vol. 24B, Science and Technology of Zirconia III, edited by S. Sōmiya, N. Yamamoto and H. Hanagida, (American Ceramic Society, Columbus, OH, 1988) pp. 1075–1082.Google Scholar
  13. 13.
    B. J. Kellett and F. F. Lange, J. Amer. Ceram. Soc. 69 (1986) C172.CrossRefGoogle Scholar
  14. 14.
    P. C. Panda, J. Wang and R. Raj, ibid. 71 (1988) C507.CrossRefGoogle Scholar
  15. 15.
    K. R. Venkatachar and R. Raj, ibid. 69 (1986) 499.CrossRefGoogle Scholar
  16. 16.
    M. M. R. Boutz, A. J. A. Winnubst, A. J. Burggraaf, M. Nauer and C. Carry, ibid.. accepted (1994).CrossRefGoogle Scholar
  17. 17.
    P. Den Exter, A. J. A. Winnubst and A. J. Burggraaf, ibid.. accepted (1994).CrossRefGoogle Scholar
  18. 18.
    H. Toraya, M. Yoshimura and S. Sōmiya, ibid. 67 (1984) C119.Google Scholar
  19. 19.
    J. C. Wurst and J. A. Nelson, ibid. 55 (1972) 109.CrossRefGoogle Scholar
  20. 20.
    J. H. De Boer, in “The Structure and Properties of Materials”, edited by D. H. Evertett and F. S. Stone (Butterworth, London, 1985), pp. 68–94.Google Scholar
  21. 21.
    D. C. Hague and M. J. Mayo, “Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures”, ASI Series E, Applied Sciences Vol. 233 Edited by M. Nastasi, D. M. Parkin and H. Gleiter, (NATO, 1992) pp. 539–545.Google Scholar
  22. 22.
    R. R. Wills and J. K. McCoy, J. Amer. Ceram. Soc. 68 (1985) C95.CrossRefGoogle Scholar
  23. 23.
    Y. J. He, A. J. A. Winnusbt, H. Verweij and A. J. Burggraaf, J. Mater. Sci. accepted (1994).Google Scholar
  24. 24.
    A. H. Heuer, D. J. Sellers and W. H. Rhodes, J. Amer. Ceram. Soc. 52 (1969) 468.CrossRefGoogle Scholar
  25. 25.
    Y. Ma and K. J. Bowman, ibid. 74 (1991) 2941.CrossRefGoogle Scholar
  26. 26.
    K. Tsukuma and M. Shimaoa, Amer. Ceram. Soc. Bull. 64 (1985) 310.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. J. He
    • 1
  • A. J. A. Winnubst
    • 1
  • H. Verweij
    • 1
  • A. J. Burggraaf
    • 1
  1. 1.Faculty of Chemical Technology, Laboratory for Inorganic Chemistry, Materials Science and CatalysisUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations