Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6485–6494 | Cite as

Solid-state deformation of polytetrafluoroethylene powder

Part I Extrusion drawing
  • H. Okuyama
  • T. Kanamoto
  • R. S. Porter
Papers

Abstract

Polytetrafluoroethylene (PTFE) powder of a high molecular weight (~ 107) was drawn by solid-state extrusion in the temperature range 100–340°C, which covers the glass transition temperature (125°C) and the ambient melting point (334°C). Draw was attainable only above 100°C. The maximum achievable extrusion draw ratio (EDRmax) was almost constant, ~ 10, from 100–280°C, yet increased rapidly with further increasing temperature, reaching a maximum of 60 at 330–340°C. At yet higher temperatures, the drawability was lost due to melting. The structure and properties of drawn products were found to be complexely affected by extrusion temperature and EDR. For extrusion at 330–340°C, near the melting point, an effective and high draw was achieved. The crystalline chain orientation function, crystallite sizes, both along and perpendicular to the chain axis, differential scanning calorimetry heat of fusion, and flexural modulus increased with EDR and approached a maximum at EDR of 30–40, depending on the extrusion temperatures. Above a specific EDR, the efficiency of draw decreased due to the formation of flaws. The highly oriented PTFE consisted of microfibrils of a significantly large lateral dimension (~ 45 nm) compared to those (6–20 nm) generally found in oriented polymers. The modulus of a drawn PTFE was sensitive to the test temperatures, reflecting the reversible crystal/crystal transitions at ~ 19 and 30°C. The optimization of the extrusion conditions resulted in the maximum achieved flexural modulus at 24°C of 20 GPa at an EDR 40 for extrusion at 340°C.

Keywords

Differential Scanning Calorimetry Glass Transition Temperature Polytetrafluoroethylene PTFE Draw Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Zachariades and R. S. Porter (eds), “Strength and Stiffness of Polymers”, Plastic Engineering Series, Vol. 4 (Marcel Dekker, New York, 1983).Google Scholar
  2. 2.
    I. M. Ward (ed.), “Development in Oriented Polymers-2” (Elsevier Applied Science, London, 1987).Google Scholar
  3. 3.
    A. E. Zachariades and R. S. Porter (eds), “High Modulus Polymers”, Plastic Engineering Series, Vol. 17 (Marcel Dekker, New York, 1988).Google Scholar
  4. 4.
    T. Kanamoto and R. S. Porter, in “Integration of Fundamental Polymer Science and Technology”, edited by P. J. Lemstra and L. A. Kleintjens (Elsevier Applied Science, 1989) p. 168.Google Scholar
  5. 5.
    J. Spmook and J. Pennings, Coll. Polym. Sci. 262 (1984) 712.CrossRefGoogle Scholar
  6. 6.
    P. J. Barham and A. Keller, J. Mater. Sci. 20 (1985) 2281.CrossRefGoogle Scholar
  7. 7.
    K. Furuhata, T. Yokokawa, C. Seoul and K. Miyasaka, J. Polym. Sci. Polym. Phys. Ed. 24 (1986) 59.CrossRefGoogle Scholar
  8. 8.
    N. A. J. M. Van Aerle, PhD dissertation, Eindhoven University of Technology, The Netherlands (1989).Google Scholar
  9. 9.
    N. Gerrits, PhD dissertation, Eindhoven University of Technology (1990).Google Scholar
  10. 10.
    P. Smith, P. J. Lemstra, B. Calb and A. J. Pennings, Polym. Bull. 1 (1979) 733.CrossRefGoogle Scholar
  11. 11.
    P. Smith, H. D. Chanzy and B. P. Rotzinger, Polym. Commun. 26 (1985) 258.CrossRefGoogle Scholar
  12. 12.
    B. P. Rotzinger, H. D. Chanzy and P. Smith, Polymer 30 (1989) 1814.CrossRefGoogle Scholar
  13. 13.
    A. E. Zachariades, M. P. C. Watts, T. Kanamoto and R. S. Porter, J. Polym. Sci. Polym. Lett. Ed. 17 (1979) 487.Google Scholar
  14. 14.
    G. T. Pawlikowski, D. J. Mitchell and R. S. Porter, J. Polym. Sci. Polym. Phys. Ed. 26 (1988) 1865.CrossRefGoogle Scholar
  15. 15.
    T. Kanamoto, T. Ohama, K. Tanaka, M. Takeda and R. S. Porter, Polymer 28 (1987) 1617.CrossRefGoogle Scholar
  16. 16.
    T. Kameda and T. Kanamoto, Polym. Prep. Jpn 42 (1993) P-1478.Google Scholar
  17. 17.
    F. J. Rahl, M. A. Evanco, R. J. Fredericks and A. C. Reimschuessel, J. Polym. Sci. A-2 10 (1972) 1337.CrossRefGoogle Scholar
  18. 18.
    S. Yamaguchi, Kobunshi Ronbunshu 39 (1982) 493.CrossRefGoogle Scholar
  19. 19.
    T. Folda, H. Hoffman, H. Chanzy and P. Smith, Nature 333 (6168) (1988) 55.CrossRefGoogle Scholar
  20. 20.
    H. W. Starkweather Jr, J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 73.CrossRefGoogle Scholar
  21. 21.
    R. L. M. Gee and J. R. Collier, Polym. Eng. Sci. 26 (1986) 239.CrossRefGoogle Scholar
  22. 22.
    Mitsui/Du Pont Fluorochemicals Co. Ltd (1993).Google Scholar
  23. 23.
    M. Kakudo and N. Kasai, “X-Ray Diffraction of Polymers” (Maruzen, Tokyo, 1968).Google Scholar
  24. 24.
    A. L. Ryland, J. Chem. Educ. 35 (1958) 80.CrossRefGoogle Scholar
  25. 25.
    C. A. Sperati and H. W. Starkweather Jr, Adv. Polym. Sci. 2 (1961) 465.CrossRefGoogle Scholar
  26. 26.
    A. J. Waddon and A. Keller, J. Polym. Sci. Polym. Phys. Ed. 28 (1990) 1063.CrossRefGoogle Scholar
  27. 27.
    Idem, ibid. A. J. Waddon and A. Keller, J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 923.CrossRefGoogle Scholar
  28. 28.
    S. M. Aharoni and J. P. Sibilia, J. Appl. Polym. Sci. 23 (1979) 133.CrossRefGoogle Scholar
  29. 29.
    T. Nishino, PhD dissertation, Kobe Univeristy (1990).Google Scholar
  30. 30.
    T. Yamamoto and T. Hara, Polymer 23 (1982) 521.CrossRefGoogle Scholar
  31. 31.
    E. S. Clark and L. T. Muus, Z. Kristallogr. 117 (1962) 119.CrossRefGoogle Scholar
  32. 32.
    D. M. Sadler and P. J. Barham, Polymer 31 (1990) 36.CrossRefGoogle Scholar
  33. 33.
    Idem, ibid. D. M. Sadler and P. J. Barham, Polymer 31 (1990) 42.Google Scholar
  34. 34.
    Idem, ibid. D. M. Sadler and P. J. Barham, Polymer 31 (1990) 46.CrossRefGoogle Scholar
  35. 35.
    A. G. Gibson, G. R. Davies and I. M. Ward, ibid. 19 (1978) 683.CrossRefGoogle Scholar
  36. 36.
    A. Tsuruta, T. Kanamoto, K. Tanaka and R. S. Porter, J. Polym. Sci. Polym. Phys. Ed. 23 (1985) 429.CrossRefGoogle Scholar
  37. 37.
    K. O'Leary and P. H. Geil, J. Appl. Phys. 38 (1967) 4169.CrossRefGoogle Scholar
  38. 38.
    K. Sakaoku and A. Peterline, J. Polym. Sci. A-2 9 (1971) 895.CrossRefGoogle Scholar
  39. 39.
    M. G. Dobb and D. J. Johnson, in “Development in Oriented Polymers”, edited by I. M. Ward (Elsevier Applied Science, London, 1987) Ch. 4.Google Scholar
  40. 40.
    J. R. Minter, K. Shimamura and E. L. Thomas, J. Mater. Sci. 16 (1981) 3303.CrossRefGoogle Scholar
  41. 41.
    A. J. Owen, in “Development in Oriented Polymers”, edited by I. M. Ward (Elsevier Applied Science, London, 1987) Ch. 7.Google Scholar
  42. 42.
    H. H. Chuah, R. S. Porter, and J. S. Lin, ibid.in “ 19 (1986) 2732.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Okuyama
    • 1
  • T. Kanamoto
    • 1
  • R. S. Porter
    • 2
  1. 1.Department of Applied ChemistryScience University of TokyoTokyoJapan
  2. 2.Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations