Journal of Materials Science

, Volume 29, Issue 24, pp 6479–6484 | Cite as

Effects of microwave and heating treatments on the crystallographic properties of a potassium acetate powder

  • M. Gasgnier
  • A. Petit


The crystallographic properties of a commercial potassium acetate powder have been analysed before and after various heat treatments. From X-ray diffraction patterns and scanning electron microscopy it is shown that the initial material is constituted by two chemical compounds which are characterized by tetragonal structures. After heating either by means of a microwave monomode, or under a poor vacuum at low temperature (363 and 413 K), one of these compounds disappears. This one is very likely a hydrated form of the acetate. Additionally, infrared and Raman spectra of the potassium acetate have been recorded. The absorption bands have been compared to those of sodium acetate. Moreover, X-ray absorption spectra (recording of the K edge of potassium) corroborates the desorption of water from the powder maintained under high vacuum.


Scanning Electron Microscopy Microwave Hydrated Heat Treatment Raman Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bram, T. Fillebeen-Khan and N. Geraghty, Synth. Commun. 10 (1980) 279.CrossRefGoogle Scholar
  2. 2.
    J. Barry, J. Bram, G. Decodts, A. Loupy, P. Pigeon and J. Sansoule, Tetrahedron 79 (1983) 2673.CrossRefGoogle Scholar
  3. 3.
    E. Gutierrez, A. Loupy, J. Bram and E. Ruiz-Hit-Zky, Tetrahedron Lett. 30 (1989) 945.CrossRefGoogle Scholar
  4. 4.
    J. Bram, A. Loupy and M. Majdoub, Synth. Commun. 20 (1990) 125.CrossRefGoogle Scholar
  5. 5.
    J. Bram, A. Loupy, M. Majdoub, E. Gutierrez and E. Ruizhitzky, Tetrahedron 15 (1990) 5167.CrossRefGoogle Scholar
  6. 6.
    J. Hatibuara and G. S. Parry, Acta Crystallogr. B28 (1972) 1099.Google Scholar
  7. 7.
    P. Ferloni, M. Svalesi and P. Franzosini, Z. Naturforsch. 30A (1975) 1447.Google Scholar
  8. 8.
    T. E. Jenkins and P. O'Brien, J. Phys. Chem. Solids 44 (1983) 565.CrossRefGoogle Scholar
  9. 9.
    W. S. Tse, P. Y. Chiang and S. J. Lin, Chin. J. Phys. (Taiwan) 24 (1986) 63.Google Scholar
  10. 10.
    S. P. Ngeyi, I. Malik and E. F. Westrum Jr, J. Chem. Thermodyn. 22 (1990) 91.CrossRefGoogle Scholar
  11. 11.
    R. Bouaziz and J. Y. Basset, C.R. Acad. Sci. (Paris) Sér. C 263 (1966) 581.Google Scholar
  12. 12.
    B. M. Nirsha, A. D. Chubinidze, Yu. A. Velkikodnyi, B. V. Zhadanov and V. A. Olikova, J. Gen. Chem. 53 (1983) 1320.Google Scholar
  13. 13.
    M. Gasgnier, L. Albert, J. Derouet, L. Beaury, A. Loupy, A. Petit and P. Jacquault, J. Alloys Compounds 198 (1993) 73.CrossRefGoogle Scholar
  14. 14.
    M. Kaklana, M. Kotaka and M. Okamoto, J. Chem. Phys. 87 (1983) 2526.CrossRefGoogle Scholar
  15. 15.
    H. Noma, Y. Miwa, I. Yokoyama and K. Machida, J. Molec. Struct. 242 (1991) 207.CrossRefGoogle Scholar
  16. 16.
    M. Gasgnier, G. Schiffmacher, L. Albert, P. Caro, H. Dexpert, J. M. Esteva, C. Blancard and R. Karnatak, J. Less-Common Metals 156 (1989) 59.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Gasgnier
    • 1
    • 2
  • A. Petit
    • 3
  1. 1.UR 209 CNRSMeudon Cedex
  2. 2.UA 478, Université Paris-SudOrsay CedexFrance
  3. 3.UA 478 CNRS, Laboratoire des Réactions Sélectives sur SupportsICMO, Université Paris-SudOrsay CedexFrance

Personalised recommendations