Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6458–6462 | Cite as

High-temperature creep of yttrium-aluminium garnet single crystals

  • S. Karato
  • Z. Wang
  • K. Fujino
Papers

Abstract

High-temperature creep in single crystals of Y3Al5O12 (YAG) was studied by constant strainrate compression tests. The creep resistance of YAG is very high: a stress of ~ 300 MPa is needed to deform at a strain rate of 10−6 (s−1) at a temperature as high as 1900 K (~0.84 Tm, (melting temperature)). YAG deforms using the 〈111〉 {1¯10} slip systems following a power law with stress exponent n ~ 3 and activation energy E* ~ 720 kJ mol−1. However, a small dependence of n on temperature and of E* on stress was observed. This stress-dependence of activation energy combined with the observed dislocation microstructures suggests that the high creep resistance of YAG is due to the difficulty of dislocation glide as opposed to the difficulty of climb. Present dislocation creep data are compared with diffusion creep data and a deformation mechanism map is constructed. Large transition stresses (2−3 GPa for 10 μm grain size) are predicted, implying that deformation of most fine-grained YAG will occur by diffusion creep.

Keywords

Microstructure Activation Energy Melting Temperature Compression Test Deformation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Rabier and H. Garem, in “Deformation of Ceramic Materials II”, edited by R. E. Tressler and R. C. Bradt (Plenum Press, New York, 1984) pp. 187–198.CrossRefGoogle Scholar
  2. 2.
    V. G. Govorov, N. N. Voinova, Kh. S. Bagdasarov and E. A. Stepanov, Sov. Phys. Crystallogr. 20 (1976) 598.Google Scholar
  3. 3.
    G. S. Corman, Final Report on U.S. Air Force Contract No. F33615-87-C-5545, Research and Development Center, General Electric Co., Schenectedy, NY (1990) p. 88.Google Scholar
  4. 4.
    T. A. Parthasarathy, T.-I. Mah and L. E. Matson, J. Amer. Ceram. Soc. 76 (1993) 29.CrossRefGoogle Scholar
  5. 5.
    Z. Wang, S. Karato and K. Fujino, Phys. Chem. Minerals, submitted for publication.Google Scholar
  6. 6.
    T. A. Parthasarathy, T.-I. Mah and K. Keller, J. Amer. Ceram. Soc. 75 (1992) 1756.CrossRefGoogle Scholar
  7. 7.
    C. H. Carter, Jr., C. A. Stone, R. F. Davis and D. R. Schaub, Rev. Sci. Instr. 51 (1980) 1352.CrossRefGoogle Scholar
  8. 8.
    H. Garem, J. Rabier and P. Veyssiere, J. Mater. Sci. 17 (1982) 878.CrossRefGoogle Scholar
  9. 9.
    J. Rabier, P. Veyssiere and J. Grilhe, Phys. Stat. Sol. 35 (1976) 259.CrossRefGoogle Scholar
  10. 10.
    S. Takeuchi and A. S. Argon, J. Mater. Sci. 11 (1976) 1542.CrossRefGoogle Scholar
  11. 11.
    J. Ando, K. Fujino and T. Takeshita, Phys. Earth Planet. Inter., in press.Google Scholar
  12. 12.
    S. Karato, ibid. 55 (1989) 234.CrossRefGoogle Scholar
  13. 13.
    S. Karato, Z. Wang, B. Liu and K. Fujino, Earth Planet Sci. Lett., submitted for publication.Google Scholar
  14. 14.
    H. Haneda, Y. Miyazaki and S. Shirasaki, J. Cryst. Growth 68 (1984) 581.CrossRefGoogle Scholar
  15. 15.
    H. J. Frost and M. F. Ashby, “Deformation Mechanism Maps” (Pergamon, Oxford, 1982), p. 168.Google Scholar
  16. 16.
    G. W. Groves and A. Kelly, Phil. Mag. 8 (1963) 877.CrossRefGoogle Scholar
  17. 17.
    J. W. Hutchinson, Proc. R. Soc. Lond. A. 348 (1976) 101.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Karato
    • 1
  • Z. Wang
    • 1
  • K. Fujino
    • 1
  1. 1.Department of Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations