Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6445–6452 | Cite as

Unreacted cement content in macro-defect-free composites: impact on processing-structure-property relations

  • P. G. Desai
  • J. A. Lewis
  • D. P. Beintz
Papers

Abstract

The effect of unreacted cement content on the processing, structure, and properties of macro-defect-free (MDF) composites fabricated from calcium aluminate cement (CAC), α-alumina (Al2O3), and polyvinyl alcohol-acetate (PVAA) has been investigated. Three systems were formed with initial CAC: Al2O3 ratios of 50∶50, 35∶65, and 25∶75 by volume in their respective formulations. The amount of unreacted cement was reduced from 68.1 vol% which is present in standard (100% CAC) MDF cement, to 14.9 vol % for composites with an initial CAC: Al2O3 ratio of 25∶75, while the hydration product content was reduced from 18.1 vol % to 11.4 vol % for these respective systems. A hard core/soft shell continuum percolation model was used to determine that alumina substitution did not significantly affect the percolative nature of the interphase and bulk polymer regions. However, experiments showed that the reduction in unreacted cement content through Al2O3 substitution affected both the processing and microstructural features of these composites. The moisture absorption kinetics and flexural strength of composites exposed to 100% relative humidity were also evaluated, and it was found that their moisture sensitivity improved with decreasing unreacted cement content. A hypothesis is presented to explain the role of unreacted cement on the moisture sensitivity of these materials.

Keywords

Flexural Strength Hydration Product Moisture Absorption Calcium Aluminate Percolation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Birchall, A. J. Howard and K. Kendall, Nature 289 (1981) 388.CrossRefGoogle Scholar
  2. 2.
    Anon, Pure Appl. Chem. 18 (1969) 583.Google Scholar
  3. 3.
    J. D. Birchall, A. J. Howard, and K. Kendall, US Pat. 4410 366 (1983).Google Scholar
  4. 4.
    S. R. Tan, A. J. Howard and J. D. Birchall, Phil. Trans. R. Soc. Lond. A322 (1987) 479.CrossRefGoogle Scholar
  5. 5.
    O. Popoola, W. M. Kriven and J. F. Young, J. Am. Ceram. Soc. 74 (1991) 1928.CrossRefGoogle Scholar
  6. 6.
    P. G. Desai, MS thesis, University of Illinois (1992).Google Scholar
  7. 7.
    C. M. Cannon and G. W. Groves, J. Mater. Sci. 21 (1986) 4009.CrossRefGoogle Scholar
  8. 8.
    C. S. Poon, L. E. Wassal, and G. W. Groves, Mater. Sci. Technol. (1988) 993.Google Scholar
  9. 9.
    N. B. Eden and J. E. Bailey, ibid. (1988) 301.Google Scholar
  10. 10.
    J. A. Lewis, M. A. Boyer and D. P. Bentz, J. Am. Ceram. Soc. 77 (3) (1993) 11.Google Scholar
  11. 11.
    P. P. Russell, MS thesis, University of Illinois (1991).Google Scholar
  12. 12.
    K. Toyoshima, in “Polyvinyl Alcohol: Properties and Applications” edited by C. A. Finch (Wiley-Interscience, New York, 1973) pp. 339–90.Google Scholar
  13. 13.
    I. Balberg and S. Torquato, Phys. Rev. A 35 (1987) 5174.CrossRefGoogle Scholar
  14. 14.
    R. A. Desai, MS thesis, University of Illinois (1990).Google Scholar
  15. 15.
    A. J. McHugh and L. S. Tan, J. Adv. Cement-Based Mater. 1 (1993) 2.CrossRefGoogle Scholar
  16. 16.
    J. B. Wachtman, W. Capps and J. Mandel, J. Mater. 7 (1972) 188.Google Scholar
  17. 17.
    W. Sinclair and G. W. Groves, J. Mater. Sci. 20 (1985) 2846.CrossRefGoogle Scholar
  18. 18.
    S. A. Rodger, S. A. Brooks, W. Sinclair, G. W. Groves and D. D. Double, ibid. 20 (1985) 2853.CrossRefGoogle Scholar
  19. 19.
    R. N. Edmonds and A. J. Majumdar, ibid. 24 (1989) 3813.CrossRefGoogle Scholar
  20. 20.
    O. Popoola, W. M. Kriven and J. F. Young, Ultramicroscopy 37 (1991) 318.CrossRefGoogle Scholar
  21. 21.
    O. Popoola and W. M. Kriven, J. Mater. Res. 7 (1992) 1545.CrossRefGoogle Scholar
  22. 22.
    P. G. Desai, J. F. Young and R. P. Wool, in “Materials Research Society Symposium Proceedings,” Vol. 245, edited by F. P. Glasser, G. McCarthy, J. F. Yang, T. O. Mason, and P. L. Pratt (Materials Research Society, Pittsburgh, PA, 1992) pp. 179–84.Google Scholar
  23. 23.
    N. Kataoka and H. Igarashi, in “MRS International Meeting on Advanced Materials,” Vol. 13 (Materials Research Society, Pittsburgh, PA, 1989) pp. 195–205.Google Scholar
  24. 24.
    P. G. Desai, J. F. Young and R. P. Wool, unpublished work (1991).Google Scholar
  25. 25.
    S. N. Ushakov and E. M. Lavrentyeva, J. Appl. Chem. USSR 26 (1953) 885.Google Scholar
  26. 26.
    M. A. Boyer, MS thesis, University of Illinois (1993).Google Scholar
  27. 27.
    J. A. Shunkwiler, MS thesis, University of Illinois (1989).Google Scholar
  28. 28.
    J. A. Lewis and M. A. Boyer, J. Adv. Cement-based Mater. (1994) in press.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. G. Desai
    • 1
    • 2
  • J. A. Lewis
    • 1
    • 2
  • D. P. Beintz
    • 1
    • 3
  1. 1.NSF Science and Technology Center for Advanced Cement Based MaterialsUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations