Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6420–6426 | Cite as

The production of Mn-Zn ferrite ceramics by injection moulding

  • A. J. Pigram
  • R. Freer
Papers

Abstract

A ceramic injection-moulding technique has been used for the preparation of bars and toroids of Mn-Zn ferrite. The binders were based on a combination of polypropylene, microcrystalline wax and stearic acid. Components up to 4 mm thick were fabricated; extended binder burn-out schedules, up to 8.5 days in duration, in a nitrogen atmosphere were required for the thicker parts. Sintered densities were typically 90% of the theoretical value. Initial permeabilities of the toroids were lower than expected (700–1600 rather than 4000) due to the smaller grain size (4–6 μm) of the fired products. Optimization of the sintering schedule should enable the microstructure and magnetic properties to be improved.

Keywords

Nitrogen Polymer Grain Size Microstructure Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. C. Snelling, “Soft Ferrites: Properties and Applications”, 2nd Edn, (Butterworth, London, 1988) pp. 1–10.Google Scholar
  2. 2.
    H. Robbins, in Proceedings of 3rd International Conference on Ferrites, Kyoto, September–October 1980, edited by H. Watanabe (Reidel, Tokyo 1982) p. 7.Google Scholar
  3. 3.
    B. B. Yu and A. Goldman, ibid.in p. 68.Google Scholar
  4. 4.
    V. A. Roberts, PhD thesis, University of Manchester (1991).Google Scholar
  5. 5.
    J. S. Walker and E. R. Martin, “Injection Moulding of Plastics” (Iliffe, London, 1966) pp. 1–6.Google Scholar
  6. 6.
    G. T. Kookootsedes, T. E. Ruth and P. G. Leonhara, Bull. Am. Ceram. Soc. 51 (1972) 860.Google Scholar
  7. 7.
    J. A. Mangels and G. J. Tennenhouse, ibid. 1306.Google Scholar
  8. 8.
    T. J. Whalen and C. F. Johnson, Ceram. Bull. 60 (1981) 216.Google Scholar
  9. 9.
    B. C. Mutsuddy, Powder Met. Int. 19 (2) (1987) 43.Google Scholar
  10. 10.
    M. J. Edirisinghe, Ceram. Bull. 70 (1991) 824.Google Scholar
  11. 11.
    G. F. Vander Voort, “Metallography: Principles and Practice” (McGraw Hill, London, 1984) p. 447.Google Scholar
  12. 12.
    A. J. Pigram, PhD thesis, University of Manchester (1993).Google Scholar
  13. 13.
    M. J. Eedirshinghe, private communications (1992).Google Scholar
  14. 14.
    H. Rikakawa and I. Sasaki, in “Advances in Ceramics”, Vol. 15, Proceedings of 4th International Conference on Ferrites, San Francisco, 1985 edited by F. F. Y. Wang, (Amer. Ceram. Soc., Ohio, 1985) p. 215.Google Scholar
  15. 15.
    J. G. Zhang, M. J. Edirisinghe and J. R. G. Evans, J. Mater. Sci. 24 (1989) 840.CrossRefGoogle Scholar
  16. 16.
    M. J. Edirisinghe and J. R. G. Evans, Br. Ceram. Proc. 38 (1986) 67.Google Scholar
  17. 17.
    K. Kendall, Proc. Br. Ceram. Soc. 42 (1989) 81.Google Scholar
  18. 18.
    R. C. Weast (ed.), “CRC Handbook of Chemistry and Physics”, 70th Edn (CRC Press, Boca Raton, Florida, 1989) p. B144.Google Scholar
  19. 19.
    E. Roess, in Proceedings of International Conference on Ferrites, Kyoto, 1970, edited by Y. Hoshino, S. Iida and M. Sugimoto (University Park Press, Tokyo, 1971) p. 203.Google Scholar
  20. 20.
    A. Beer and J. Schwarz, IEEE Trans. Mag. 2 (1966) 470.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. J. Pigram
    • 1
  • R. Freer
    • 1
  1. 1.Materials Science CentreUniversity of Manchester/UMISTManchesterUK

Personalised recommendations