Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6403–6412 | Cite as

TEM study of metastable β-phase decomposition in rapidly solidified Ti-6Al-4V alloy

  • Z. Fan
  • A. P. Miodownik
Papers

Abstract

A new rationale is presented for various decomposition products obtained from the metastable β-phase found in Ti-6A1-4V alloy produced by hot isostatic pressing comminuted melt-spun fibres and cooled to room temperature by furnace cooling. This alloy has an α-matrix with about 8 vol% retained β-phase, which is supersaturated with β-stabilizers to such an extent that the martensitic transformation has been suppressed. The metastable β-phase decomposes by different modes during continuous cooling, depending on the actual composition of individual β-grains. Less enrichment of vanadium and iron favours the direct formation of the equilibrium α-phase from the β-matrix, while greater enrichment of vanadium and iron leads to a spinodal decomposition of the metastable β-phase, resulting in a β+β′ two-phase structure. During further continuous cooling, the β′-phase which is lean in β-stabilizers will transform into isothermal ω-phase. In addition, an unknown phase has also been observed in the β-phase, which is typified by the appearance of 1/2{112}β reflections in the SAD patterns.

Keywords

Iron Furnace Vanadium Martensitic Transformation Decomposition Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Williams, in “Titanium Science and Technology”, Vol. 3, edited by R. I. Jaffee and H. M. Burte (Plenum Press, New York, 1973) p. 1433.Google Scholar
  2. 2.
    S. K. Sikka, Y. K. Vohra and R. Chidambaram, Progr. Mater. Sci. 27 (1982) 145.CrossRefGoogle Scholar
  3. 3.
    E. L. Harmon and A. R. Troiano, Trans. ASM 33 (1961) 43.Google Scholar
  4. 4.
    C. G. Rhodes and J. C. Williams, Metall. Trans. 6 (1975) 2103.CrossRefGoogle Scholar
  5. 5.
    Z. Fan, A. P. Miodownik, L. Chandrasekaran and M. Ward-Close, J. Mater. Sci. 29 (1994) 1127.CrossRefGoogle Scholar
  6. 6.
    W. G. Burgers, Physica 1 (1934) 561.CrossRefGoogle Scholar
  7. 7.
    J. W. Cahn, Trans. Met. Soc. AIME 242 (1968) 166.Google Scholar
  8. 8.
    R. F. S. Hearman, Landolt-Bornstein 1 (1966) 1.Google Scholar
  9. 9.
    M. K. Kool and J. F. Breedis, Acta Metall. 18 (1970) 579.CrossRefGoogle Scholar
  10. 10.
    J. C. Williams, D. de Fontaine and N. E. Paton, Metall. Trans. 4 (1973) 2701.CrossRefGoogle Scholar
  11. 11.
    W. Sinkler and D. E. Luzzi, Acta Metall. Mater. 42 (1994) 1249.CrossRefGoogle Scholar
  12. 12.
    J. P. Mornoroli, PhD thesis, University of Nancy, France (1974).Google Scholar
  13. 13.
    Z. Fan, unpublished work, University of Surrey, Guildford (1993).Google Scholar
  14. 14.
    P. D. Frost, W. M. Parris, L. L. Hirsch, J. R. Doig and C. M. Schwartz, Trans. ASM 46 (1954) 231.Google Scholar
  15. 15.
    J. M. Silcock, Acta Metall. 6 (1955) 481.CrossRefGoogle Scholar
  16. 16.
    C. P. Chang and M. H. Loretto, Philos. Mag. 63A (1991) 389.CrossRefGoogle Scholar
  17. 17.
    G. Shao, PhD thesis in Progress, University of Surrey, Guildford (1994).Google Scholar
  18. 18.
    S. Djanarthany, C. Servant and O. Lyon, Philos. Mag. 66A (1992) 575.CrossRefGoogle Scholar
  19. 19.
    M. de Bondt and A. Deruyttere, Acta Metall. 15 (1967) 993.CrossRefGoogle Scholar
  20. 20.
    I. M. Robertson and C. M. Wayman, Philos. Mag. 48A (1983) 421.CrossRefGoogle Scholar
  21. 21.
    Idem, ibid. I. M. Robertson and C. M. Wayman, Philos. Mag. 48A (1983) 443.CrossRefGoogle Scholar
  22. 23.
    B. A. Hatt and J. A. Roberts, Acta Met. 8 (1960) 575.CrossRefGoogle Scholar
  23. 24.
    S. L. Sass, Acta Metall. 17 (1969) 813.CrossRefGoogle Scholar
  24. 25.
    D. de Fontaine, N. E. Paton and J. C. Williams, ibid. 19 (1971) 1153.CrossRefGoogle Scholar
  25. 26.
    K. Enami, J. Hasunuma, A. Nagasawa and S. Nenno, Scripta Metall. 10 (1976) 879.CrossRefGoogle Scholar
  26. 27.
    F. Reynaud, J. Appl. Crystallogr. 9 (1967) 263.CrossRefGoogle Scholar
  27. 28.
    R. Strychor, J. C. Williams and W. A. Soffa, Met. Trans. 19A (1988) 225.CrossRefGoogle Scholar
  28. 29.
    C. Servant, P. Lacombe and M. Griveau, J. Mater. Sci. 15 (1980) 859.CrossRefGoogle Scholar
  29. 30.
    H. Ezaki, M. Morinaga and N. Yukawa, Philos. Mag. 57A (1988) 651.CrossRefGoogle Scholar
  30. 31.
    J. C. Williams and M. J. Blackburn, Trans. ASM 60 (1967) 373.Google Scholar
  31. 32.
    J. C. Williams, B. S. Hickman and D. H. Leslie, Met. Trans. 2 (1971) 477.CrossRefGoogle Scholar
  32. 33.
    A. Lasalmonie and M. Loubradou, J. Mater. Sci. 14 (1979) 2589.CrossRefGoogle Scholar
  33. 34.
    N. A. Vanderpuye and A. P. Miodownik, in “The Science, Technology and Applications of Titanium” (edited by R. I. Jaffee and H. M. Burte) (Pergamon Press, New York, 1970) p. 719.CrossRefGoogle Scholar
  34. 35.
    P. Pietrokowsky and P. Duwez, Trans. AIME 194 (1952) 627.Google Scholar
  35. 36.
    T. Sato, S. Hukai and Y. C. Huang, J. Aust. Inst. Met. 5 (1960) 149.Google Scholar
  36. 37.
    D. L. Moffat and D. C. Larbalestier, Met. Trans. 19A (1988) 1677.CrossRefGoogle Scholar
  37. 38.
    L. Hadjaj, A. Menand and C. Martin, quoted by N. E. Paton and H. L. Fraser, in “Proceedings of Sixth World Conference On Titanium”, Vol. 3 edited by P. Lacombe, R. Tricot and G. Beranger (Societe Francaise de Metallurgie, France, 1988) p. 1469.Google Scholar
  38. 39.
    L. Kaufman and H. Nesor, in “Titanium Science and Technology”, Vol. 2, edited by R. I. Jaffee and H. M. Burte (Plenum Press, New York, 1973) p. 773.Google Scholar
  39. 40.
    D. L. Moffat and U. R. Kattner, Met. Trans. 19A (1988) 2389.CrossRefGoogle Scholar
  40. 41.
    G. H. Narayanan and T. F. Archbold, Scripta Metall. 4 (1970) 873.CrossRefGoogle Scholar
  41. 42.
    O. Lyon, C. Severac and C. Servant, Philos. Mag. 48A (1981) 825.Google Scholar
  42. 43.
    N. Saunders and L. Chandrasekaran, J. Phase Equil 13 (1982) 612.CrossRefGoogle Scholar
  43. 44.
    W. Fuming and H. M. Flower, Mater. Sci. Tecnhol. 5 (1989) 1172.CrossRefGoogle Scholar
  44. 45.
    D. B. Chernov and A. Ya. Shinayaev, Russ. J. Phys. Chem. 49 (1975) 445.Google Scholar
  45. 46.
    D. B. Chernov, V. V. Molokanov, P. B. Budberg and A. Ya. Shinyaev, in “Titanium and Titanium Alloys”, Vol. 2, edited by J. C. Williams and A. F. Belov (Plenum Press, New York, 1982) p. 1307.Google Scholar
  46. 47.
    D. De Fontaine, Acta Metall. 18 (1970) 275.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Z. Fan
    • 1
  • A. P. Miodownik
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations