Journal of Materials Science

, Volume 29, Issue 24, pp 6397–6402 | Cite as

Auger electron spectroscopic analysis of chemical vapour deposited diamond/substrate interfaces

  • Q. S. Chia
  • C. M. Younes
  • P. G. Partridge
  • G. C. Allen
  • P. W. May
  • C. A. Rego


Auger electron spectroscopy has been used to identify the allotropes of carbon in chemical vapour deposited diamond films deposited on copper and tungsten wires and on SiC and silica fibres and to measure the thickness and composition of the diamond/substrate reaction layers. The significance of these results for the manufacture of diamond fibres is discussed.


Polymer Copper Spectroscopic Analysis Tungsten Auger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. R. Ashfold, P. W. May, C. A. Rego and N. M. Everitt, Chem. Soc. Rev. 23 (1994) 21.CrossRefGoogle Scholar
  2. 2.
    P. W. May, C. A. Rego, R. M. Thomas, M. N. R. Ashford, K. N. Rosser, P. G. Partridge and N. M. Everitt, in “Proceedings of the 3rd International Symposium on Diamond Materials”, Honolulu, May 1993 (Electrochemical Society).Google Scholar
  3. 3.
    P. G. Partridge, P. W. May and M. N. R. Ashfold, Overview, Mater. Sci. Technol. 10 (1994) 177.CrossRefGoogle Scholar
  4. 4.
    P. G. Partridge, P. W. May, M. N. R. Ashfold C. A. Rego, Mater. Sci. Technol. (1994) in press.Google Scholar
  5. 5.
    S. Matsumoto, J. Mater. Sci. Lett. 4 (1985) 600.CrossRefGoogle Scholar
  6. 6.
    S. Sato, M. Kamo and N. Setaka, in “High Tech Ceramics”, Ed. P. Vincenzi (Elsevier, Amsterdam, 1987).Google Scholar
  7. 7.
    K. Kobashi, K. Nishimura, Y. Kaweti and T. Horiuchi, J. Vac. Sci. Technol. 46 (1988) 1816.CrossRefGoogle Scholar
  8. 8.
    C. P. Chang, D. L. Flimm, D. E. Ibboston and J. A. Mucha, J. Appl. Phys. 63 (1988) 1744.CrossRefGoogle Scholar
  9. 9.
    S. J. Harris, A. M. Weiner and T. A. Perry, Appl. Phys. Lett. 53 (1985) 1605.CrossRefGoogle Scholar
  10. 10.
    S. S. Rusk and J. Y. Lee, J. Appl. Phys. 69 (1991) 2618.CrossRefGoogle Scholar
  11. 11.
    B. E. Williams and J. J. Glass, J. Mater. Res. 4 (1989) 373.CrossRefGoogle Scholar
  12. 12.
    D. J. Pickrell, W. Zhu, A. R. Birzian, R. E. Newnham and R. Messier, J. Mater. Res. 6 (1991) 1264.CrossRefGoogle Scholar
  13. 13.
    P. J. Fallon and L. M. Brown, Diamond Rel. Mater. 2 (1993) 1004.CrossRefGoogle Scholar
  14. 14.
    P. G. Lurie and J. M. Wilson, Surface Sci. 65 (1977) 476.CrossRefGoogle Scholar
  15. 15.
    F. R. McFeely, S. P. Kowalczyk, L. Ley, R. G. Cavell, R. A. Pollak and D. A. Shirley, Phys. Rev. B 9 (1974) 5268.CrossRefGoogle Scholar
  16. 16.
    P. E. Pehrsson and D. Ramaker, J. Mater. Res. 8 (1993) 2716.CrossRefGoogle Scholar
  17. 17.
    W. Zhu, C. A. Randall, A. R. Badzian and R. Messier, J. Vac. Sci. Technol. 7 (1993) 2315.CrossRefGoogle Scholar
  18. 18.
    H. H. Madden, ibid. 18 (1981) 677.CrossRefGoogle Scholar
  19. 19.
    B. R. Stoner, G. H. M. Ma, S. D. Wolter and J. T. Glass, Phys. Rev. B 45 (1992) 11067.CrossRefGoogle Scholar
  20. 20.
    X. K. Chen, G. Matua, S. Pramanick and J. Narayan, in “2nd International Symposium on Diamond Materials”, Vol. 8 (1991) p. 91.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Q. S. Chia
    • 1
  • C. M. Younes
    • 1
    • 2
  • P. G. Partridge
    • 1
    • 2
  • G. C. Allen
    • 1
    • 2
  • P. W. May
    • 1
    • 3
  • C. A. Rego
    • 1
    • 3
  1. 1.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.Interface Analysis CentreUniversity of BristolBristolUK
  3. 3.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations