Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6354–6378 | Cite as

Anisotropic etching of silicon crystals in KOH solution

Part II Theoretical two-dimensional etched shapes: discussion of the adequation of the dissolution slowness surface
  • C. R. Tellier
  • A. Brahim-Bounab
Papers

Abstract

Theoretical two-dimensional etched shapes are derived from numerical simulations involving the equation of the dissolution slowness surface related to silicon crystals etched in aqueous KOH solutions. Theoretical changes in cross-sectional shapes of starting circular sections and in x′1 and [001] profilometry traces with the angle of cut, ϕo, are analysed in terms of the geometrical features of the slowness surface. The important role played by extrema in the dissolution slowness in determining the final two-dimensional etched shapes, is outlined. Theoretical etched shapes are systematically compared with the experimental shapes and the adequation of the proposed slowness surface is discussed.

Keywords

Polymer Silicon Material Processing Geometrical Feature Silicon Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sangwal, “Etching of Crystals” (North-Holland, Amsterdam, 1987).Google Scholar
  2. 2.
    G. Delapierre, Sensors Actuators 17 (1989) 123.CrossRefGoogle Scholar
  3. 3.
    F. C. Frank, in “Growth and Perfection of Crystals”, edited by R. H. Doremus, B. W. Robert and D. Turnbull (Wiley, New York, 1965) p. 411.Google Scholar
  4. 4.
    F. C. Frank and M. B. Ives, J. Appl. Phys. 31 (1960) 1996.CrossRefGoogle Scholar
  5. 5.
    D. W. Shaw, J. Electrochem. Soc. 128 (1981) 874.CrossRefGoogle Scholar
  6. 6.
    Idem D. W. Shaw, J. Crystal Growth 47 (1979) 509.CrossRefGoogle Scholar
  7. 7.
    C. R. Tellier, J. Y. Amaudrut and A. Brahim-Bounab, ibid. 26 (1991) 595.Google Scholar
  8. 8.
    T. Leblois and C. R. Tellier, J. Phys. III 2 (1992) 1259.Google Scholar
  9. 9.
    A. Brahim-Bounab and C. R. Tellier, in “Proceedings of the 6th European Frequency and Time Forum”, Noordwijk, The Netherlands, March 1992 (European Space Agency, Paris, 1992) pp. 355–60.Google Scholar
  10. 10.
    C. R. Tellier, T. Leblois, A. Brahim-Bounab and D. Benmessaouda, in “Proceedings of the 1st Japanese-French Congress of Mecatronique”, Besançon, France, October 1992 (Imprimerie du Conseil Général du Doubs, 1992) 6 pp.Google Scholar
  11. 11.
    C. R. Tellier, T. G. Leblois and P. C. Maitre, J. Mater. Sci. 24 (1989) 3029.CrossRefGoogle Scholar
  12. 12.
    J. S. Danel, F. Michel and G. Delapierre, Sensors Actuators A21–A23 (1990) 971.CrossRefGoogle Scholar
  13. 13.
    B. W. Batterman, J. Appl. Phys. 28 (1957) 1236.CrossRefGoogle Scholar
  14. 14.
    M. Lighthill and G. Whitman, Proc. Roy. Soc. A229 (1955) 281.Google Scholar
  15. 15.
    C. R. Tellier and J. L. Vaterkowski, J. Mater. Sci. 24 (1989) 1077.CrossRefGoogle Scholar
  16. 16.
    A. Brahim-Bounab, J. Y. Amaudrut and C. R. Tellier, ibid. 26 (1991) 5585.CrossRefGoogle Scholar
  17. 17.
    C. R. Tellier, J. Crystal Growth 100 (1990) 515.CrossRefGoogle Scholar
  18. 18.
    C. R. Tellier, N. Vialle and J. L. Vaterkowski, Surf. Coat. Technol. 34 (1988) 417.CrossRefGoogle Scholar
  19. 19.
    C. R. Tellier and A. Brahim-Bounab, J. Mater. Sci. to be published.Google Scholar
  20. 20.
    IEEE “Standard on Piezoelectricity” (IEEE, New York, 1978) p. 15.Google Scholar
  21. 21.
    B. A. Irving, in “The Electrochemistry of Semiconductors”, edited by P. J. Holmes (Academic Press, London, 1962) pp. 256–89.Google Scholar
  22. 22.
    C. R. Tellier, N. Vialle and J. L. Vaterkowski, in “Proceedings of the 40th Annual Frequency Control Symposium”, Philadelphia, PA, May 1986 (IEEE, New York, 1986) pp. 76–85.Google Scholar
  23. 23.
    R. B. Heimann, in “Silicon Chemical Etching”, edited by J. Grabmaier (Springer, Berlin, 1982).Google Scholar
  24. 24.
    L. Csepregi, Microelectr. Eng. 3 (1985) 221.CrossRefGoogle Scholar
  25. 25.
    K. E. Petersen, Proc. IEEE 70 (1982) 420.CrossRefGoogle Scholar
  26. 26.
    H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, J. Electrochem. Soc. 137 (1990) 3612.CrossRefGoogle Scholar
  27. 27.
    C. R. Tellier, P. Blind and D. Jozwick, in “Proceedings of the 2nd European Frequency and Time Forum”, Neuchâtel, Switzerland, March 1988 (Fondation Suisse pour la Recherche en Microtechniques, Neuchâtel, 1988) pp. 937–58.Google Scholar
  28. 28.
    E. G. Thwaite, Wear 51 (1978) 253.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. R. Tellier
    • 1
  • A. Brahim-Bounab
    • 1
  1. 1.Laboratoire de Chronométrie Electronique et PiézoélectricitéEcole Nationale Supérieure de Mécanique et des MicrotechniquesBesancon CedexFrance

Personalised recommendations