Advertisement

Journal of Materials Science

, Volume 29, Issue 24, pp 6341–6353 | Cite as

Crack growth in elastically damaged materials

  • F. E. Buresch
Review

Abstract

Brittle, polycrystalline and polyphase materials such as ceramics and fibre-reinforced brittle composites contain residual thermo-mechanical stresses from manufacturing. These stresses are concentrated at sites of microstructural inhomogeneities such as grain and phase boundaries. The nucleation and growth of microcracks can minimize the local micro-strain energy density; thus, the local, residual stresses can act as nuclei for microcracks. The density of nuclei, statistically distributed within the material, depends on grain size, i.e. the distance between nuclei, with defined values of micro-strain energy density, is material specific. Stress-induced microcracking can act as an attractor for elastic damage at the local scale to produce a process zone that acts as a sink of strain-energy release on a larger scale, for example, the process zone at a crack front. It can be shown that the stress-rate dependent growth of local damage follows a power law which quantifies strengthening and softening during slow crack growth, prior to catastrophic crack extension. The damage-induced zone, produced by the release of strain energy on the local scale, can shield the macrocrack and grow to a critical value at the failure load. The influence of the microstructure on damage will be quantified and related to sub-critical and critical crack extension in brittle materials.

Keywords

Brittle Residual Stress Local Scale Crack Front Failure Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Griffith, Phil. Trans. R. Soc. (Lond.) A221 (1920) 163.Google Scholar
  2. 2.
    H. Neuber, Z. Konstruktion 20 (1968) 245.Google Scholar
  3. 3.
    G. R. Irwin, in “Handbuch der Phisik”, Vol. 6, edited by S. Flugge (Springer, Berlin, 1958) pp. 551–60.Google Scholar
  4. 4.
    G. R. Irwin and P. C. Paris, in“Fracture”, Vol. 2, edited by H. Liebowitz (Academic, NY, 1971).Google Scholar
  5. 5.
    R. G. Hoagland, G. T. Hahn and A. R. Rosenfield, Roch. Mech. 5 (1973) 77.CrossRefGoogle Scholar
  6. 6.
    F. E. Buresch, Sci. Ceram. 7 (1973) 383.Google Scholar
  7. 7.
    Idem, ibid. F. E. Buresch, Sci. Ceram. 7 (1973) 475.Google Scholar
  8. 8.
    idem, in “8th Arbeitskr. Bruchvorgange” (DVM, 1976).Google Scholar
  9. 9.
    Idem F. E. Buresch in ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA, 1979) pp. 151–65.Google Scholar
  10. 10.
    G. C. Sih, Theor. Appli. Fract. Mech. 4 (1985) 157.CrossRefGoogle Scholar
  11. 11.
    F. Osterstock et al., Proj. MAE-0072-C, Final Rep., Lermat Cean, ESK Kempten, ICA Stuttgart, June 1991.Google Scholar
  12. 12.
    F. E. Buresch, Adv. Ceram. 12 (1984) 306.Google Scholar
  13. 13.
    Idem F. E. Buresch, Mater. Sci. Eng. 71 (1985) 187.CrossRefGoogle Scholar
  14. 14.
    Idem F. E. Buresch, Mater. Pr. 29 (1987) 261.Google Scholar
  15. 15.
    A. G. Atkins and Y. W. Mai, “Elastic and Plastic Fracture” (Ellis Horwood, Chichester, 1985) p. 268.Google Scholar
  16. 16.
    F. E. Buresch, “Lecture Notes in Engineering”, No. 59, edited by K. P. Herrmann and Z. S. Olesiak (Springer, Berlin, 1990) pp. 227–38.Google Scholar
  17. 17.
    Idem. F. E. Buresch, Fort. Ber. DKG, Bd. 6. Heft l (1991) 51.Google Scholar
  18. 18.
    F. E. Buresch, E. Babilon and G. Kleist, in “ICRS2” edited by C. Beck, S. Denis and A. Simon (Elsevier, London, 1989) p. 1003.Google Scholar
  19. 19.
    E. Babilon, G. Kleist, F. E. Buresch and H. Nickel, Sci. Ceram. 14 (1988) 665.Google Scholar
  20. 20.
    Idem, in “ECF7” (1989) p. 552.Google Scholar
  21. 21.
    E. Babilon, K.K.O. BäR, G. Kleist and H. Nickel, in “Euram Ceramics”, Vol. 3 (Elsevier, 1989) p. 247.Google Scholar
  22. 22.
    E. Babilon, personal communication.Google Scholar
  23. 23.
    C. Sklarczyk, J. Eur. Ceram. Soc. 9 (1992) 427.CrossRefGoogle Scholar
  24. 24.
    S. Pangraz, E. Babilon and A. Arnold, Acoust. Imag. 19 (1992) 691.CrossRefGoogle Scholar
  25. 25.
    K. Bär, Dissertation, Aachen (1990).Google Scholar
  26. 26.
    K. Bär, R. Mergen and F. Osterstock, Eur. Ceram. 3 (1989) 190.Google Scholar
  27. 27.
    H. Frei and G. Grathwohl, Inst. Werkst. Uni. Karlsruhe, personal communication (1991).Google Scholar
  28. 28.
    H. Frei, G. Plappert and G. Grathwohl, in “Euram Ceram”, Vol. 3 (Elsevier, London, 1989) p. 115.Google Scholar
  29. 29.
    R. Davidge, J. R. Mclaren, I. Tichell, Frat. Mech. Cer. 5 (1983) 594.Google Scholar
  30. 30.
    U. F. Kocks, Acta. Metall. 14 (1966) 1629.CrossRefGoogle Scholar
  31. 31.
    J. W. Hutchinson, Acta Metall. 35 (1987) 1605.CrossRefGoogle Scholar
  32. 32.
    O. Buresch, F. E. Buresch, W. Hönle and H. G. Von Schnering, Microchem. Acta (Wien) I (1987) 219.CrossRefGoogle Scholar
  33. 33.
    F. E. Buresch, K. Frye and Th. Müller, Fract. Mech. Ceram. 5 (1983) 591.CrossRefGoogle Scholar
  34. 34.
    F. E. Buresch and H. Nickel (DVM, 1984) pp. 123–34.Google Scholar
  35. 35.
    L. Pintschovius, E. Gering, B. Sscholes, E. Macherauch, 13.01. 01P05A, KFK (1988)Google Scholar
  36. 36.
    H. M. Bui and A. Ehrlacher, Adv. Fract. Res. 2 ICF 5 (1981) 533.Google Scholar
  37. 37.
    T. Mishima, Y. Nanayama, Y. Hirose and K. Tanaka, Adv. X-ray Anal. 30 (1987) 545.Google Scholar
  38. 38.
    I. Buresch and F. E. Buresch, in “Third ICRS”, Frankfurt (1993) in press.Google Scholar
  39. 39.
    F. E. Buresch, Fortschr. Ber. DKG Bd 7 (1992) 140.Google Scholar
  40. 40.
    Idem., in “Proc. Third Int. Conf. Compu. Plasticity”, edited by D. R. Owen, E. Onate, E. Hinton (1992) p. 1707.Google Scholar
  41. 41.
    M. Gomina, D. Themines, J. L. Chermant and F. Osterstock, Int. J. Fract. 34 (1987) 219.CrossRefGoogle Scholar
  42. 42.
    M. Gomina and J. L. Chermant, Fortschr. Ber. DKG Bd. 3 (1988) 17.Google Scholar
  43. 43.
    M. Gomina and M. H. Rouillon, ibid. 5(1) (1990) 283.Google Scholar
  44. 44.
    F. Osterstock and R. Moussa, ibid. 3 (1988) 71.Google Scholar
  45. 45.
    C. T. Bodur, Dissertation, Stuttgart (1989).Google Scholar
  46. 46.
    C. T. Bodur and K. Kromp, Fortschr. Ber. DKG Bd 3(3) (1988) 109.Google Scholar
  47. 47.
    K. Schulte, in “18th Jahrestagung AVK”, Freudenstadt, 6–7 October 1982.Google Scholar
  48. 48.
    J. R. Michener and S. J. Burns, Int. J. Fract. 23 (1983) R45.Google Scholar
  49. 49.
    M. Rühle and A. G. Evans, Mater. Sci. 13 (1989) 85.Google Scholar
  50. 50.
    F. E. Buresch, in “Reliability of Engineering Materials”, edited by A. L. Smith (Butterworth, London, 1984) pp. 55–74.CrossRefGoogle Scholar
  51. 51.
    M. Rühle, N. Claussen and A. H. Heuer, J. Am. Ceram. Soc. 69 (1986) 195.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • F. E. Buresch
    • 1
  1. 1.Institute for Computer ApplicationsUniversity of StuttgartGermany

Personalised recommendations