Journal of Materials Science

, Volume 30, Issue 8, pp 2035–2041 | Cite as

The molecular relaxation mechanisms in cork as studied by thermally stimulated discharge currents

  • J. F. Mano
  • N. T. Correia
  • J. J. Moura Ramos
  • B. Saramago


The dielectric relaxation mechanisms present in cork have been investigated in the temperature range -100 to 100 °C using the technique of thermally stimulated discharge currents. A relaxation mechanism was detected which showed a compensation behaviour as observed for the α-relaxation (or glass transition relaxation) of synthetic polymers and which lead us to attribute to cork a glass transition-like temperature of 18 °C. One lower temperature mechanism was also observed, with low activation enthalpy and entropy, which is presumably originated by local motions (internal rotations) of polar molecular groups. An upper Tg relaxation of higher intensity was also detected which was attributed to large-scale non-cooperative motions of polymeric segments.


Entropy Enthalpy Glass Transition Internal Rotation Synthetic Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. V. NATIVIDADE, “Subericultura” (Ministério da Economia, Direcção dos Serviços Florestais e Agrícolas, Lisboa, 1950).Google Scholar
  2. 2.
    H. PEREIRA, Wood Sci. Technol. 22 (1988) 211.CrossRefGoogle Scholar
  3. 3.
    P. SITTLE, Protoplasma 54 (1962) 555.CrossRefGoogle Scholar
  4. 4.
    H. PEREIRA, M. E. ROSA and M. A. FORTES, Int. Assoc. Wood Anat. Bull. 8(3) (1987) 213.Google Scholar
  5. 5.
    M. E. ROSA and M. A. FORTES, Mater. Sci. Eng. 100 (1988) 69.CrossRefGoogle Scholar
  6. 6.
    Idem, J. Mater. Sci. 23 (1988) 35.CrossRefGoogle Scholar
  7. 7.
    Idem, ibid. 26 (1991) 341.CrossRefGoogle Scholar
  8. 8.
    C. M. GOMES, A. C. FERNANDES and B. S. ALMEIDA, J. Coll. Interface Sci. 156 (1993) 195.CrossRefGoogle Scholar
  9. 9.
    I. M. VEIGA, A. C. FERNANDES, B. S. ALMEIDA and A. J. GROSZEK, J. Mater. Sci. Lett. 12 (1993) 1206.Google Scholar
  10. 10.
    M. MOURGES, M. F. HARMAND, A. LAMURE and C. LACABANNE, J. Thermal Anal. 40 (1993) 863.CrossRefGoogle Scholar
  11. 11.
    A. B. DIAS, J. J. MOURA RAMOS and G. WILLIAMS, Polymer, 35 (1994) 1253.CrossRefGoogle Scholar
  12. 12.
    A. B. DIAS, N. T. CORREIA, J. J. MOURA RAMOS and A. C. FERNANDES, Polym. Int., 33 (1994) 293.CrossRefGoogle Scholar
  13. 13.
    C. LACABANNE and D. CHATAIN, J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 2315.CrossRefGoogle Scholar
  14. 14.
    L. J. GIBSON and M. F. ASHBY, “Cellular Solids. Structure and Properties” (Pergamon Press, Oxford, 1988).Google Scholar
  15. 15.
    J. P. IBAR, Thermochim. Acta 192 (1991) 91.CrossRefGoogle Scholar
  16. 16.
    J. F. MANO, J. J. MOURA RAMOS, A. C. FERNANDES and G. WILLIAMS, Polymer 35 (1994) 5171.Google Scholar
  17. 17.
    J. F. MANO, N. T. CORREIA, J. J. MOURA RAMOS, A. C. FERNANDES, J. Polym. Sci. Polym. Phys. Ed., in press.Google Scholar
  18. 18.
    D. J. PLAZEK, J. Polym. Sci. Polym. Phys. Ed. 20 (1982) 1533.CrossRefGoogle Scholar
  19. 19.
    D. J. PLAZEK and G.-F. GU, ibid. 20 (1982) 1551.CrossRefGoogle Scholar
  20. 20.
    J. CHEN, L. J. FETTERS and D. J. PLAZEK, ibid. 20 (1982) 1565.CrossRefGoogle Scholar
  21. 21.
    S. J. ORBON and D. J. PLAZEK, ibid. 20 (1982) 1575.CrossRefGoogle Scholar
  22. 22.
    R. F. BOYER, in “Computational Modelling of Polymers”, edited by J. BICERANO (Marcel Dekker, New York, 1992) pp. 1–52.Google Scholar
  23. 23.
    C. LACABANNE, P. GOYAUD and R. F. BOYER, J. Polym. Sci. Polym. Phys. Ed. 18 (1980) 277.CrossRefGoogle Scholar
  24. 24.
    N. T. CORREIA, J. F. MANO and J. J. MOURA RAMOS, manuscript in preparation.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. F. Mano
    • 1
  • N. T. Correia
    • 1
  • J. J. Moura Ramos
    • 1
  • B. Saramago
    • 1
    • 2
  1. 1.Centro de Química-Física, MolecularISTLisboa CodexPortugal
  2. 2.Centro de Química Estrutural, Complexo IISTLisboa CodexPortugal

Personalised recommendations