Advertisement

Journal of Materials Science

, Volume 30, Issue 8, pp 1987–1992 | Cite as

Monolayer films of diblock copolymer microdomains for nanolithographic applications

  • P. Mansky
  • P. haikin
  • E. L. Thomas
Papers

Abstract

Several techniques have been investigated for creating large-area thin films of diblock copolymers, with well-ordered two-dimensional periodic microstructure on the scale of a few tens of nanometres. Such structures might potentially be used as templates for lithography, at a length scale not easily accessed by electron-beam methods. Using a copolymer with a spherical microdomain structure, we find that it is quite easy to obtain large-area films consisting of a monolayer of spherical domains, arranged on a hexagonal lattice with a lattice constant of 33 nm. Copolymers with cylindrical microstructure typically orient parallel to the substrate and free surface, it has been found that the perpendicular orientation is metastable: if a well- or poorly-ordered film is initially prepared with the cylinders perpendicularto the surface, annealing results in a well-ordered film with the same orientation, with a lattice constant of 27 nm for the polymer used in this study. For both cylinders and spheres, grains measuring typically 30×30 lattice constants are readily obtained.

Keywords

Polymer Microstructure Thin Film Hexagonal Free Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. S. BATES and G. H. FREDRICKSON, Ann. Rev. Phys. Chem. 41 (1990) 525.CrossRefGoogle Scholar
  2. 2.
    C. S. HENKEE, L. J. FETTERS and E. L. THOMAS, J. Mater. Sci. 23 (1988) 1695.CrossRefGoogle Scholar
  3. 3.
    S. H. ANASTASIADIS, T. P. RUSSELL, S. K. SAJITA and C. F. MAJKRZAK. Phys. Rev. Lett. 62 (1989) 1852.CrossRefGoogle Scholar
  4. 4.
    T. P. RUSSELL, G. COULON, V. R. DELINE and D. C. MILLER, Macromolecules 22 (1989) 4600.CrossRefGoogle Scholar
  5. 5.
    G. COULON, D. AUSERRE and T. RUSSELL, J. Phys. (Fr.) 51 (1990) 777.CrossRefGoogle Scholar
  6. 6.
    G. COULON, B. COLLIN, D. CHATENAY and Y. GALLOT, J. Phys. II (Fr.) 3 (1993) 697.Google Scholar
  7. 7.
    D. HOFSTADTER, Phys. Rev. B 14 (1976) 2239.CrossRefGoogle Scholar
  8. 8.
    D. J. THOULESS, M. KOHMOTO, M. P. NIGHTINGALE and M. DEN NIJS, Phys. Rev. Lett. 49 (1982) 405.CrossRefGoogle Scholar
  9. 9.
    D. WEISS, M. L. ROUKES, A. MENSCHIG, P. GRAMBOW, K. VON KLITZING, G. WEIMANN, ibid. 66 (1991) 2790.CrossRefGoogle Scholar
  10. 10.
    D. WEISS, P. GRAMBOW, K. VON KLITZING, A. MENSCHIG and G. WEIMANN, Appl. Phys. Lett. 58 (1991) 2960.CrossRefGoogle Scholar
  11. 11.
    H. W. DECKMANN and J. DUNSMUIR, ibid. 41 (1982) 377.CrossRefGoogle Scholar
  12. 12.
    H. FANG and P. J. STILES, Phys. Rev. B 41 (1990) 10171.CrossRefGoogle Scholar
  13. 13.
    C. B. ROXLO, H. W. DECKMAN, and B. ABELES, Phys. Rev. Lett 57 (1986) 2462.CrossRefGoogle Scholar
  14. 14.
    P. MANSKY and H. DECKMANN, unpublished.Google Scholar
  15. 15.
    G. HADZIIOANNOU and A. SKOULIOS, Coll. Polym. Sci. 257 (1979) 136.CrossRefGoogle Scholar
  16. 16.
    D. SCHWARK, D. VEZIE, J. REFFNER, B. ANNIS and E. THOMAS, J. Mater. Sci. Lett. 11 (1992) 352.CrossRefGoogle Scholar
  17. 17.
    P. MANSKY, P. M. CHAIKIN, M. SHAYEGAN and L. FETTERS, Bull. Am. Phys. Soc. 36 (1991) 1051.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. Mansky
    • 1
  • P. haikin
    • 1
  • E. L. Thomas
    • 2
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations