Journal of Materials Science

, Volume 29, Issue 13, pp 3572–3576 | Cite as

IN-713C characteristic properties optimized through different heat treatments

  • A. Ges
  • H. Palacio
  • R. Versaci


The strength of a nickel-based superalloy hardened through precipitation is related to the volume fraction, particle size and distribution of the precipitated phase, γ′. These parameters may vary as a result of heat treatment, or high-temperatures service. The information obtained, describing the influence of time and temperature on the precipitated phase, γ′, is of special importance owing to its technological application at high temperatures. Dissolution or precipitation kinetics are such that the volume-fraction balance of the γ′ phase is quickly established at an ageing temperature given by successive changes due only to the particle growth. The results of the present study describe heat-treatment effects on size and distribution of the γ′ phase, and precipitated carbides ageing of a nickel-based superalloy (IN-713C). These on ageing studies at a certain temperature show that the kinetic growth of γ′ particles by controlled diffusion follows that rt1/3 law.


Precipitation Particle Size Carbide Heat Treatment Technological Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Lomis, Met. Trans. 3 (1972) 988.Google Scholar
  2. 2.
    F. Shubert, “Phase Stability in High Temperature Alloys”, (1980) pp. 119–49.Google Scholar
  3. 3.
    I. Lifshitz and V. Slyozov, J. Phys. Chem. Solids. 19 (1961).Google Scholar
  4. 4.
    C. Wagner, Z. Elect. 65 (1961) 581.Google Scholar
  5. 5.
    H. F. Merick, “Precipitation in Nickel-Base Alloys”, ICSMA 1976, Vol. 1, p. 161.Google Scholar
  6. 6.
    G. W. Greenwood, Acta Metall. 4 (1956) 243.CrossRefGoogle Scholar
  7. 7.
    A. J. Ardell, ibid. 20 (1972) 61.CrossRefGoogle Scholar
  8. 8.
    W. Mitchell, Z. Metallkde. 55 (1964) 613.Google Scholar
  9. 9.
    E. Van der Molen, J. Oblak and O. Kriege, Met. Trans. 2 (1971) 1627.Google Scholar
  10. 10.
    C. H. White, in “The Nimonic Alloys”, edited by W. Betteridge and J. Heslop (1974) p. 63.Google Scholar
  11. 11.
    D. Chellman and A. J. Ardell, Acta Metall. 22 (1974) 577.CrossRefGoogle Scholar
  12. 12.
    R. A. Stevens and P. Flewitt, Mater. Sci. Eng. 37 (1979) 237.CrossRefGoogle Scholar
  13. 13.
    P. Henderson and M. McLean, Acta Metall 31 (1983) 1203.CrossRefGoogle Scholar
  14. 14.
    M. McLean, Metal Sci. 18 (1984) 249.CrossRefGoogle Scholar
  15. 15.
    A. K. Bhambri, T. Z. Kattamis and J. E. Morral, Met. Trans. 6B (1975) 523.CrossRefGoogle Scholar
  16. 16.
    H. Palacio, O. Garbellini, A. Ges and H. Biloni, “Jornadas Metalúrgicas 1988” (Sociedad Argentina de Metales, La Plata, Argentina, 1988) pp. 192–5.Google Scholar
  17. 17.
    R. F. Decker, “Source Book on Materials for Elevated Temperature Applications”, (ASM, 1979) pp. 275–98.Google Scholar
  18. 18.
    N. S. Stoloff, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (1972) pp. 79–111.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Ges
    • 1
  • H. Palacio
    • 1
  • R. Versaci
    • 2
  1. 1.Institute de Física de Materiales Tandil (IFIMAT), CICPBA, Facultad de Ciencias ExactasUniversidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina
  2. 2.Departamento de MaterialesComisión Nacional de Energíe Atómica Gerencia de DesarrolloBuenos AiresArgentina

Personalised recommendations