Journal of Materials Science

, Volume 29, Issue 13, pp 3559–3564 | Cite as

A study on the components of surface free energy of quartz from contact angle measurements

  • B. Janczuk
  • A. Zdziennicka


Measurements of the contact angle for water, glycerol, formamide, diiodomethane and 1,1,2,2-tetrabromoethane on a quartz surface were made. Using the results obtained, the “geometric mean” approach and long-range and acid-base interaction approach, the dispersion, non-dispersion, Lifshitz-van der Waals and acid-base components of the surface free energy of quartz were determined and compared with those determined in different ways. On the basis of the measurements and calculations it was found that the surface free energy of quartz depends largely on the amounts of silanol groups and physically adsorbed water molecules on its surface. It was also found that the two tested approaches to surface free energy of solids and liquids gave similar results, and it is suggested that the surface free energy of quartz results mainly from dispersion and hydrogen-bond intermolecular interactions.


Quartz Glycerol Free Energy Contact Angle Formamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Fowkes, J. Colloid Interf. Sci. 28 (1968) 493.CrossRefGoogle Scholar
  2. 2.
    B. Jańczuk, E. Chibowski and T. Białopiotrowicz, Chem. Papers 40 (1986) 349.Google Scholar
  3. 3.
    J. W. Whalen, J. Phys. Chem. 65 (1961) 468.CrossRefGoogle Scholar
  4. 4.
    P. Staszczuk, B. Jańczuk and E. Chibowski, Mater. Chem. Phys. 12 (1985) 469.CrossRefGoogle Scholar
  5. 5.
    R. N. Lamb and D. N. Furlong, J. Chem. Soc., Faraday Trans. I 78 (1982) 61.CrossRefGoogle Scholar
  6. 6.
    F. M. Fowkes, Ind. Eng. Chem. 56(12) (1964) 40.CrossRefGoogle Scholar
  7. 7.
    C. J. van Oss, M. K. Chaudhury and R. J. Good, Chem. Rev. 88 (1988) 927.CrossRefGoogle Scholar
  8. 8.
    Idem., Adv. Colloid Interf. Sci. 28 (1987) 35.CrossRefGoogle Scholar
  9. 9.
    C. J. van Oss and R. J. Good, J. Disper. Sci. Technol. 9(4) (1988) 355.CrossRefGoogle Scholar
  10. 10.
    C. J. van Oss, L. Ju, M. K. Chaudhury and R. J. Good, J. Colloid Interf. Sci. 128 (1989) 313.CrossRefGoogle Scholar
  11. 11.
    D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13 (1969) 1741.CrossRefGoogle Scholar
  12. 12.
    D. H. Kaelble and C. Uy, J. Adhesion 2 (1970) 50.CrossRefGoogle Scholar
  13. 13.
    D. H. Kaelble and E. H. Cirlin, J. Polym. Sci. 9 (1971) 363.CrossRefGoogle Scholar
  14. 14.
    B. Janczuk and T. Białopiotrowicz, J. Colloid Interf. Sci. 127 (1989) 289.Google Scholar
  15. 15.
    R. J. Good and E. Elbing, Ind. Eng. Chem. 62 (1970) 54.CrossRefGoogle Scholar
  16. 16.
    J. Panzer, J. Colloid Interf. Sci. 44 (1973) 142.CrossRefGoogle Scholar
  17. 17.
    B. Janczuk, W. Wojcik and A. Zdziennicka, ibid. 157 (1993) 384.CrossRefGoogle Scholar
  18. 18.
    M. K. Bernett and W. A. Zisman, ibid. 29 (1969) 413.CrossRefGoogle Scholar
  19. 19.
    V. V. Streilko and S. K. Rubonite, “Adsorbsia i Adsorbenty” Vol. 2 (Naukowa Dumka, Kiev, 1974) p. 84.Google Scholar
  20. 20.
    J. Nawrocki, Chromatographia 31 (1991) 177.CrossRefGoogle Scholar
  21. 21.
    B. Janczuk, Przem. Chem. 61 (1982) 468.Google Scholar
  22. 22.
    H. J. Busscher, A. W. van Pelt, H. P. de Jong and J. Arends, J. Colloid Interf. Sci. 95 (1983) 23.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • B. Janczuk
    • 1
  • A. Zdziennicka
    • 1
  1. 1.Department of Physical Chemistry, Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations