Journal of Materials Science

, Volume 29, Issue 13, pp 3535–3541 | Cite as

Effect of strain rate on the fracture of ceramic fibre reinforced glass matrix composites

  • R. U. Vaidya
  • K. K. Chawla


The effect of strain rate on the fracture behaviour of two ceramic fibre reinforced glass matrix composites was studied. Increasing the strain rate was found to enhance catastrophic failure in both of these composites. This was attributed to the crack deflection and changes in the fibre pullout length as a function of strain rate. Enhanced strain rates were found to decrease the strength, static toughness and fracture energy of the composites. This effect was more pronounced in the case of the coated fibre composites as compared to the uncoated fibre composites. This is because of fibre/matrix isolation, obtained as a result of the coating.


Polymer Material Processing Fracture Energy Fracture Behaviour Fibre Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. C. Phillips, J. Mater. Sci. 7 (1972) 1175.CrossRefGoogle Scholar
  2. 2.
    K. M. Prewo and J. J. Brennan, J. Mater. Sci. 17 (1982) 1201.CrossRefGoogle Scholar
  3. 3.
    K. M. Prewo, J. Mater. Sci. 21 (1986) 3590.CrossRefGoogle Scholar
  4. 4.
    R. L. Lehman and C. A. Doughan, Comp. Sci. Tech. 37 (1990) 149.CrossRefGoogle Scholar
  5. 5.
    T. A. Michalske and J. R. Hellmann, J. Amer. Ceram. Soc 71 (1988) 725.CrossRefGoogle Scholar
  6. 6.
    D. Maugis, in “Fracture mechanics of ceramics”, Vol. 8, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1986) p. 255.CrossRefGoogle Scholar
  7. 7.
    R. U. Vaidya, J. A. Fernando, K. K. Chawla and M. K. Ferber, Mater. Sci. and Eng. A151 (1992) 163.Google Scholar
  8. 8.
    G. K. Bansal and W. H. Duckworth, Amer. Soc Test. Mater., Spec. Tech Publ. 678 (1979) 38.Google Scholar
  9. 9.
    J. K. Kim and Y. W. Mai, Comp. Sci. and Tech. 41 (1991) 333.CrossRefGoogle Scholar
  10. 10.
    T. Macke, J. M. Quenisset, D. Neuilly, J. P. Rocher and R. Naslain, Comp. Sci. and Tech. 37 (1990) 267.CrossRefGoogle Scholar
  11. 11.
    R. W. Rice, Amer. Soc. Test. Mater. Spec. Tech. Publ. 827 (1984) 5.Google Scholar
  12. 12.
    E. B. Shand, J. Amer, Ceram. Soc. 42 (1959) 474.CrossRefGoogle Scholar
  13. 13.
    S. N. Patankar, R. Venkatesh and K. K. Chawla, Scr. Metall. Mater. 25 (1991) 361.CrossRefGoogle Scholar
  14. 14.
    A. Maheshwari, K. K. Chawla and T. A. Micahlske, Mater. Sci. and Eng. A107 (1989) 269.CrossRefGoogle Scholar
  15. 15.
    R. Venkatesh and K. K. Chawla, J. Mater. Sci. Lett. 11 (1992) 650.CrossRefGoogle Scholar
  16. 16.
    T. L. Jessen and David Lewis III, J. Amer. Ceram. Soc. 72 (1989) 818.CrossRefGoogle Scholar
  17. 17.
    K. R. McKinney, J. J. Mecholsky and S. W. Freiman, J. Amer. Ceram. Soc. 62 (1979) 336.CrossRefGoogle Scholar
  18. 18.
    R. K. Govila, K. R. Kinsman and P. Beardmore, J. Mater. Sci. 14 (1979) 1095.CrossRefGoogle Scholar
  19. 19.
    J. J. Mecholsky, J. Amer. Ceram. Soc. 64 (1981) 563.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. U. Vaidya
    • 1
  • K. K. Chawla
    • 1
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations