Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3517–3526 | Cite as

Cyclic fatigue of hot isostatically pressed silicon nitride at elevated temperatures

  • C. -K. J. Lin
  • M. G. Jenkins
  • M. K. Ferber
Article

Abstract

Cyclic fatigue properties of a hot isostatically pressed silicon nitride were investigated at 1150, 1260 and 1370 °C in ambient air. The uniaxial tensile tests were conducted under various cyclic loading wave forms and frequencies. The correlation of stress-life relations between cyclic and static fatigue results was evaluated. At 1150–1370 °C, cyclic loading caused less damage than static loading, as evidenced by the longer failure time under cyclic loading versus static loading with the same maximum applied stresses. The cyclic loading effect was more pronounced in high frequency tests at 1260 and 1370 °C and might be related to the viscoelastic behaviour of the intergranular phase. Microstructural analyses and macroscopic cyclic stress-strain and strain-time relations indicated that cyclic loading/unloading may inhibit the normal accumulation of creep damage.

Keywords

Fatigue Tensile Test Silicon Nitride Failure Time Viscoelastic Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Helms, R. A. Johnson and L. E. Groseclose, in Proceedings of the Twenty-Third Automotive Technology Development Contractors' Coordination Meeting, P-165 (Society of Automotive Engineers, Warrendale, Pennsylvania, 1986) p. 137.Google Scholar
  2. 2.
    D. Carruthers and L. Lindberg, in Proceedings of the Third International Symposium on Ceramic Materials and Components for Engines, edited by V. J. Tennery (American Ceramic Society, Westerville, Ohio, 1989) p. 1258.Google Scholar
  3. 3.
    R. Kossowsky, D. G. Miller and E. S. Diaz, J. Mater. Sci. 10 (1975) 983.CrossRefGoogle Scholar
  4. 4.
    G. D. Quinn, ibid. 25 (1990) 4361.CrossRefGoogle Scholar
  5. 5.
    Idem, ibid. 25 (1990) 4377.CrossRefGoogle Scholar
  6. 6.
    D. C. Cranmer, B. J. Hockey, S. M. Wiederhorn and R. Yeckley, Ceram. Engng Sci. Proc. 12 (1991) 1862.CrossRefGoogle Scholar
  7. 7.
    M. K. Ferber and M. G. Jenkins, J. Amer. Ceram. Soc. 75 (1992) 2453.CrossRefGoogle Scholar
  8. 8.
    T. Fett, G. Himsolt and D. Munz, Adv. Ceram. Mater. 1 (1986) 179.CrossRefGoogle Scholar
  9. 9.
    L. X. Han and S. Suresh, J. Amer. Ceram. Soc. 72 (1989) 1233.CrossRefGoogle Scholar
  10. 10.
    L. Ewart and S. Suresh, J. Mater. Sci. 27 (1992) 5181.CrossRefGoogle Scholar
  11. 11.
    C.-K. J. Lin, T. A. Mayer and D. F. Socie, in “Cyclic Deformation, Fracture, and Nondestructive Evaluation of Advanced Materials”, ASTM STP 1157, edited by M. R. Mitchell and O. Buck (American Society for Testing and Materials, Philadelphia, 1992) p. 3.CrossRefGoogle Scholar
  12. 12.
    C.-K. J. Lin and D. F. Socie, J. Amer. Ceram. Soc. 74 (1991) 1511.CrossRefGoogle Scholar
  13. 13.
    C.-K. J. Lin, D. F. Socie, Y. Xu and A. Zangvil, ibid. 75 (1992) 637.CrossRefGoogle Scholar
  14. 14.
    M. Masuda, T. Soma, M. Matsui and I. Oda, J. Ceram. Soc. Jpn 97 (1989) 612.CrossRefGoogle Scholar
  15. 15.
    Y. Tajima, K. Urashima, M. Watanabe and Y. Matsuo, in Proceedings of the Third International Symposium on Ceramic Materials and Components for Engines, edited by V. J. Tennery (American Ceramic Society, Westerville, Ohio, 1989) p. 719.Google Scholar
  16. 16.
    T. Ohji, Y. Yamauchi, W. Kanematsu and S. Ito, J. Ceram. Soc. Jpn, Int. Edn 98 (1990) 1070.CrossRefGoogle Scholar
  17. 17.
    A. G. Evans, L. R. Russell and D. W. Richerson, Metall. Trans. A 6 (1975) 707.CrossRefGoogle Scholar
  18. 18.
    M. Kawai, H. Fujita, Y. Kanki, H. Abe and J. Nakayama, in Proceedings of the First International Symposium on Ceramic Components for Engines, edited by S. Somiya, E. Kanai and K. Ando (Elsevier, London, 1983) p. 269.Google Scholar
  19. 19.
    L. Ewart and S. Suresh, J. Mater. Sci. Lett. 22 (1987) 1173.CrossRefGoogle Scholar
  20. 20.
    M. J. Reece, F. Guiu and M. F. R. Sammur, J. Amer. Ceram. Soc. 72 (1989) 348.CrossRefGoogle Scholar
  21. 21.
    S. Horibe, J. Eur. Ceram. Soc. 6 (1990) 89.CrossRefGoogle Scholar
  22. 22.
    R. H. Dauskardt, D. B. Marshall and R. O. Ritchie, J. Amer. Ceram. Soc. 73 (1990) 893.CrossRefGoogle Scholar
  23. 23.
    C.-K. J. Lin and D. Socie, in “Low Cycle Fatigue and Elasto-Plastic Behavior of Materials-3”, edited by R.-T. Rie (Elsevier, London, 1992) p. 25.Google Scholar
  24. 24.
    C.-K. J. Lin, M. G. Jenkins and M. K. Ferber, J. Eur. Ceram. Soc., 12 (1993) 3.CrossRefGoogle Scholar
  25. 25.
    S. M. Wiederhorn, in “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 623.Google Scholar
  26. 26.
    J. E. Ritter, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 667.Google Scholar
  27. 27.
    A. G. Evans and E. R. Fuller, Metall. Trans. A 5 (1974) 27.Google Scholar
  28. 28.
    A. Venkateswaran, K. Y. Donaldson and D. P. H. Hasselman, J. Amer. Ceram. Soc. 71 (1988) 565.CrossRefGoogle Scholar
  29. 29.
    D. P. H. Hasselman, A. Venkateswaran and K. Y. Donaldson, J. Mater. Sci. 24 (1989) 671.CrossRefGoogle Scholar
  30. 30.
    S. Suresh and J. R. Brockenbrough, Acta Metall. Mater. 38 (1990) 55.CrossRefGoogle Scholar
  31. 31.
    M. K. Ferber and M. G. Jenkins, in “Ceramic Technology for Advanced Heat Engines Project”, Semiannual Progress Report for October 1991 Through March 1992, ORNL/TM-12133 (Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1992) p. 315.Google Scholar
  32. 32.
    F. C. Monkman and N. J. Grant, Proc. Amer. Soc. Test. Mater. 56 (1956) 593.Google Scholar
  33. 33.
    R. W. Davidge, A. G. Evans, D. Gilling and P. R. Wilyman, in “Special Ceramics 5”, edited by P. Popper (British Ceramic Research Association, Stoke-on-Trent, UK, 1972) p. 329.Google Scholar
  34. 34.
    T. E. Easler, R. C. Bradt and R. E. Tressler, J. Amer. Ceram. Soc. 65 (1982) 317.CrossRefGoogle Scholar
  35. 35.
    R. Raj and C. K. Chyung, Acta Metall. 29 (1981) 159.CrossRefGoogle Scholar
  36. 36.
    R. L. Tsai and R. Raj, J. Amer. Ceram. Soc. 65 (1982) C88.CrossRefGoogle Scholar
  37. 37.
    D. S. Wilkinson, ibid. 71 (1988) 562.CrossRefGoogle Scholar
  38. 38.
    S. M. Wiederhorn, B. J. Hockey, D. C. Cranmer and Y. Yeckley, J. Mater. Sci. 28 (1993) 445.CrossRefGoogle Scholar
  39. 39.
    B. J. Hockey, S. M. Wiederhorn, W. Liu, J. G. Baldoni and S.-T. Buljan, ibid. 26 (1991) 3931.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. -K. J. Lin
    • 1
  • M. G. Jenkins
    • 1
  • M. K. Ferber
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations