Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3497–3504 | Cite as

Spiral growth mechanisms in partially melted bulk YBa2Cu3O7−δ

  • M. Marella
  • B. Molinas
  • B. Burtet Fabris
Article

Abstract

Large domains with platelets almost parallel to each other were obtained in bulk YBa2Cu3O7−δ by a single-step partial melting procedure. The mechanisms of nucleation and growth of platelets are discussed. The nucleation of peritectic material from the liquid phase is favoured by heterogeneities in the melt. Experimental evidence of spiral growth of the nuclei in the [0 0 1] direction is given. Furthermore, structures of growth, which could also be an indication of spiral growth in the [0 1 0]/[1 0 0] directions, are shown. The final morphology of the domains can be explained on the basis of the periodic bond chain (PBC) theory if the growth rates of flat (F) faces of the platelets are dominated by kinetic coefficients which differ between them. The morphology of the as-grown (0 0 1) surface is explained in the framework of the PBC theory with the shape of the steps of macrospirals governed by the transition from roughness to smoothness of the liquid-solid interface. An account of large step heights is given by the model of giant screw dislocations caused by an impurity-induced lattice-constant gradient. Even higher step heights are correlated to the presence of obstacles and lack of liquid phase.

Keywords

Liquid Phase Experimental Evidence Material Processing Partial Melting Growth Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Mannhart, D. Anselmetti, J. C. Bednorz, Ch. Gerber, K. A. Müller and D. G. Schlom, Supercond. Sci. Technol. 5 (1992) S125.CrossRefGoogle Scholar
  2. 2.
    B. N. Sun and H. Schmid, J. Crystal Growth 100 (1990) 297.CrossRefGoogle Scholar
  3. 3.
    M. Marella, I. Tangerini, B. Burtet Fabris, G. Dinelli and S. Vicari, J. Mater. Sci. Lett. 11 (1992) 1367.CrossRefGoogle Scholar
  4. 4.
    M. Marella, G. Dinelli, B. Burtet Fabris and B. Molinas, J. Alloys Comp. 189 (1992) L23.CrossRefGoogle Scholar
  5. 5.
    S. Jin, G. W. Kammlott, S. Nakahara, T. H. Tiefel and J. E. Graebner, Science 253 (1991) 427.CrossRefGoogle Scholar
  6. 6.
    M. R. Cimberle, C. Ferdeghini and A. S. Siri, Cryogenics 29 (1989) 69.CrossRefGoogle Scholar
  7. 7.
    M. Marella, I. Tangerini, B. Burtet Fabris, G. Dinelli, S. Vicari, V. Calzona, M. R. Cimberle, C. Ferdeghini, M. Putti and A. S. Siri, in Extended Abstracts of the 5th National Conference on High Transition Temperature Superconductivity SATT5, Capri, May 1992, edited by A. Di Chiara and M. Russo (Naples) p. 168.Google Scholar
  8. 8.
    D. H. St John, Acta Metall Mater. 38 (1990) 631.CrossRefGoogle Scholar
  9. 9.
    C. A. Bateman, L. Zhang, H. M. Chan and M. P. Harmer, J. Am. Ceram. Soc. 75 (1992) 1281.CrossRefGoogle Scholar
  10. 10.
    K. Sangwal, in “Etching of Crystals”, edited by S. Amelinckx and J. Nihoul (North-Holland, Amsterdam, 1987) p. 47.Google Scholar
  11. 11.
    P. Hartman and W. G. Perdok, Acta Crystallogr. 8 (1955) 49.CrossRefGoogle Scholar
  12. 12.
    P. Hartman, in “Crystal Growth-an Introduction”, edited by P. Hartman (North Holland, Amsterdam, 1973) p. 367.Google Scholar
  13. 13.
    B. N. Sun, P. Hartman, C. F. Woensdregt and H. Schmid, J. Crystal Growth 100 (1990) 605.CrossRefGoogle Scholar
  14. 14.
    A. Goyal, P. D. Funkenbusch, D. M. Kroeger and S. J. Burns, J. Appl. Phys. 71 (1992) 2363.CrossRefGoogle Scholar
  15. 15.
    A. A. Chernov, Z. Phys. Chem. 269 (1988) 941.Google Scholar
  16. 16.
    K. A. Jackson, in “Liquid Metals and Solidification” (American Society for Metals, Cleveland, OH, 1958) p. 174.Google Scholar
  17. 17.
    K. Sangwal, in “Etching of Crystals”, edited by S. Amelinckx and J. Nihoul (North-Holland, Amsterdam, 1987) p. 59.Google Scholar
  18. 18.
    H. P. Lang, H. Haefe, G. Leeman and H. J. Güntherodt, Phys. C 194 (1992) 81.CrossRefGoogle Scholar
  19. 19.
    B. N. Sun, K. N. R. Taylor, B. Hunter, D. N. Mathews, S. Ashby and K. Sealey, J. Crystal Growth 108 (1991) 473.CrossRefGoogle Scholar
  20. 20.
    M. Hawley, I. D. Raistrick, J. G. Beery and R. J. Houlton, Science 251 (1991) 1587.CrossRefGoogle Scholar
  21. 21.
    A. V. Narlikar, P. K. Dutta, S. B. Samanta, O. N. Srivastava, P. Ramasamy, S. C. Sabarwal, M. K. Gupta and B. D. Padalia, J. Crystal Growth 116 (1992) 37.CrossRefGoogle Scholar
  22. 22.
    D. Kuhlmann-Wilsdorf, D. Pandey and P. Krishna, Philos. Mag. A 00–4 (1980) 527.CrossRefGoogle Scholar
  23. 23.
    T. Siegrist, L. F. Schneemeyer, J. V. Waszczak, N. P. Singh, R. L. Opila, B. Batlogg, L. W. Rupp and D. W. Murphy, Phys. Rev. B 36 (1987) 8365.CrossRefGoogle Scholar
  24. 24.
    Y. Xu, R. L. Sabatini, A. R. Moodenbaugh, Y. Zhu, S.-G. Shyu, M. Suenaga, K. W. Dennis and R. W. McCallum, Phys. C 169 (1990) 205.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Marella
    • 1
  • B. Molinas
    • 1
  • B. Burtet Fabris
    • 1
  1. 1.TEMAV, Centro Ricerche VeneziaVeniceItaly

Personalised recommendations