Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3489–3496 | Cite as

Nylon-6-rubber blends

Part IV Cavitation and yield in nylon-rubber blends
  • K. Dijkstra
  • A. Van Der Wal
  • R. J. Gaymans
Article

Abstract

The macroscopic cavitation and yield behaviour of nylon-6/rubber blends was studied. The type of rubber (poly(butadiene), ethylene propylene copolymer (EPDM) or polyethylene (LDPE), the rubber concentration and the rubber particle size was varied. The onset of cavitation was determined by measuring the intensity of the transmitted light from an incident laser beam. Both the yield stress and the cavitation stress appeared to increase with increasing strain rate and rubber modulus. No linear relation between the shear modulus and the cavitation stress was found. The data indicate that blends with a very small particle size have a relatively high cavitation stress. In all cases, a high cavitation stress of the elastomer resulted in a high yield stress of the blend.

Keywords

Rubber Cavitation Shear Modulus Small Particle Size Butadiene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. M. Borggreve, R. J. Gaymans and J. Schuijer, Polymer 30 (1989) 71.CrossRefGoogle Scholar
  2. 2.
    K. Dijkstra and G. H. Ten Bolscher, J. Mater. Sci. in press.Google Scholar
  3. 3.
    A. N. Gent and D. A. Tompkins, J. Polym. Sci. A 7 (1969) 1483.CrossRefGoogle Scholar
  4. 4.
    J. M. Ball, Phil. Trans. Roy. Soc. Lond. A 306 (1982) 557.CrossRefGoogle Scholar
  5. 5.
    C. O. Horgan and R. Abeyaratne, J. Elast. 16 (1986) 189.CrossRefGoogle Scholar
  6. 6.
    C. O. Horgan and T. J. Pence, J. Appl. Mech. 56 (1989) 302.CrossRefGoogle Scholar
  7. 7.
    Idem. J. Elast. 21 (1989) 61.CrossRefGoogle Scholar
  8. 8.
    A. N. Gent and P. B. Lindley, Proc. Roy. Soc. Lond. A 249 (1958) 195.Google Scholar
  9. 9.
    A. N. Gent and D. A. Tompkins, J. Appl. Phys. 40 (1969) 2520.CrossRefGoogle Scholar
  10. 10.
    A. E. Oberth and R. S. Bruenner, Trans. Soc. Rheol. 9 (1965) 165.CrossRefGoogle Scholar
  11. 11.
    R. Stringfellow and R. Abeyaratne, Mater. Sci. Engng. A 112 (1989) 127.CrossRefGoogle Scholar
  12. 12.
    K. Cho and A. N. Gent, J. Mater. Sci. 23 (1988) 141.CrossRefGoogle Scholar
  13. 13.
    R. J. M. Borggreve, R. J. Gaymans and H. M. Eichenwald, Polymer 30 (1989) 78.CrossRefGoogle Scholar
  14. 14.
    A. Lazzeri, PhD Thesis, Cranfield Institute Of Technology, Cranfield, Great Britain (1991).Google Scholar
  15. 15.
    B. N. Epstein (Du Pont), US patent, 4174358 (23 May 1975).Google Scholar
  16. 16.
    D. W. Van Krevelen, in “Properties of polymers” (Elsevier Scientific, 1976) P. 271.Google Scholar
  17. 17.
    H. F. Mark, N. M. Bikales, C. G. Overberger and G. Menges, in “Encyclopedia of polymer science”, Vol. 16 2nd edn. (Wiley, New York, 1989) P. 737.Google Scholar
  18. 18.
    R. J. M. Borggreve, R. J. Gaymans, J. Schuijer and J. F. Ingen Housz, Polymer 28 (1987) 1489.CrossRefGoogle Scholar
  19. 19.
    A. J. Oostenbrink, L. J. Molenaar and R. J. Gaymans, Polymer Processing Society, 6th Annual Meeting, Nice (1990) Preprints. p. 07–16.Google Scholar
  20. 20.
    A. J. Oshinski, H. Keskulla and D. R. Paul, Polymer 33 (1992) 268.CrossRefGoogle Scholar
  21. 21.
    K. Dijkstra, H. H. Wevers and R. J. Gaymans, Polymer submitted.Google Scholar
  22. 22.
    K. Dijkstra and R. J. Gaymans, J. Mater. Sci. in press.Google Scholar
  23. 23.
    H. Janik, K. Dijkstra and R. J. Gaymans, to be published.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Dijkstra
    • 1
  • A. Van Der Wal
    • 1
  • R. J. Gaymans
    • 1
  1. 1.University of TwenteAE EnschedeThe Netherlands

Personalised recommendations