Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3477–3483 | Cite as

Rheology and flow-induced liquid crystal phase transitions in thermotropic polyethers

  • D. P. Heberer
  • J. A. Odell
  • V. Percec
Article

Abstract

This work investigates the interdependence of the phase behaviour, viscosity, temperature, molecular weight and shear rates of thermotropic liquid crystalline polyethers. The viscosity of the isotropic and nematic phases are quantitatively compared; a positive variation in viscosity with respect to temperature is found, with the isotropic viscosity being about an order of magnitude higher than the liquid crystalline viscosity. The dependence of viscosity upon molecular weight of well defined fractions is investigated in both the liquid-crystal and isotropic phases. In the liquid crystalline state the viscosity scales with M3.5–5. Variations in the viscosity due to temperature changes affect the isotropic phase more than the liquid crystal phase. No evidence for a negative first normal stress difference is seen. Finally, it is shown how the phase diagram of the material can be altered by shearing the material in the isotropic phase. This is evident by the onset of a shear thinning region at temperatures slightly above Ti, which can be attributed to the formation of shear induced liquid crystallinity.

Keywords

Viscosity Molecular Weight Phase Transition Phase Diagram Shear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Dealy and K. F. Wissbrun (eds), “Melt Rheology and its Role in Plastics Processing” (Van Nostrand Reinhold, London, 1990) pp. 424–440.CrossRefGoogle Scholar
  2. 2.
    K. F. Wissbrun, Brit. Polym. J. 12(4) (1980) 163.CrossRefGoogle Scholar
  3. 3.
    F. N. Cogswell, ibid. 12(4) (1980) 170.CrossRefGoogle Scholar
  4. 4.
    J. R. Tuttle, H. E. Bartony Jr and R. W. Lenz, Polym. Eng. Sci. 27 (1987) 1156.CrossRefGoogle Scholar
  5. 5.
    K. F. Wissbrun and A. C. Griffin, J. Polym. Sci., Polym. Phys. Ed. 20 (1982) 1835.CrossRefGoogle Scholar
  6. 6.
    S. Onogi and T. Asada, in “Rheology” Vol. 1, edited by G. Astari, G. Marucci and L. Nicholais (Plenum Press, New York, 1980) pp. 127–147.Google Scholar
  7. 7.
    M. Doi, J. Polym. Sci, Polym. Phys. Ed. 19 (1981) 229.CrossRefGoogle Scholar
  8. 8.
    G. Marucci and P. L. Maffetone, Macromol. 22 (1989) 4076.CrossRefGoogle Scholar
  9. 9.
    R. G. Larson, ibid. 23 (1990) 3983.CrossRefGoogle Scholar
  10. 10.
    G. Ungar, J. L. Feijoo, A. Keller, R. Yourd and V. Percec, ibid. 23 (1990) 3411.CrossRefGoogle Scholar
  11. 11.
    H. Mark, N. B. Bikales, C. G. Overberger and G. Menges (eds) “Fractionation, Encyclopedia of Polymer Science and Engineering” (Wiley Interscience, New York, 1985).Google Scholar
  12. 12.
    D. P. Heberer and J. A. Odell, to be published.Google Scholar
  13. 13.
    J. M. Gonzalez, M. E. Munoz, M. Cortazar, A. Santamaria and J. J. Pena, J. Polym. Sci., Polym. Phys. Ed. 28 (1990) 1533.CrossRefGoogle Scholar
  14. 14.
    G. Kiss and R. S. Porter, ibid. 18 (1980) 361.CrossRefGoogle Scholar
  15. 15.
    J. A. Odell, J. L. Feijoo and G. Ungar, J. Polym. Sci. B. Polym. Phys. 31 (1993) 141.CrossRefGoogle Scholar
  16. 16.
    J. Mewis and P. Moldenaers, Mol. Cyrst. Liq. Cryst. 153 (1987) 291.Google Scholar
  17. 17.
    G. G. Viola and D. G. Baird, J. Rheol. 30 (1986) 601.CrossRefGoogle Scholar
  18. 18.
    G. Marucci and A. Cifferri, J. Polym. Sci., Polym. Lett. Ed. 15 (1977) 643.CrossRefGoogle Scholar
  19. 19.
    S. L. Wunder, S. Ramachandran, C. R. Gochanour and M. Weinberg, Macromol. 19 (1986) 1696.CrossRefGoogle Scholar
  20. 20.
    G. C. Alfonso, E. Bianchi, A. Cifferri, S. Russo, F. Salaris and B. Valenti, J. Polym. Sci., Poly. Symp. 65 (1978) 213.CrossRefGoogle Scholar
  21. 21.
    M. Doi and S. F. Edwards, “Theory of Polymer Dynamics” (Clarendon Press, Oxford, 1986).Google Scholar
  22. 22.
    P. Driscoll, T. Masuda and K. Fujiwara, Macromol. 24 (1991) 1567.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • D. P. Heberer
    • 1
  • J. A. Odell
    • 1
  • V. Percec
    • 2
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.Case Western Reserve UniversityClevelandUSA

Personalised recommendations