Journal of Materials Science

, Volume 29, Issue 13, pp 3469–3476 | Cite as

Preparation of C-fibre borosilicate glass composites: Influence of the fibre distribution on mechanical properties

  • T. Klug
  • R. Brückner


Optimum conditions with respect to preparation-determined fibre distribution in borosilicate glass composites were investigated. Continuous C-fibre bundles were impregnated with glass powder in silicon alkoxide solution and wound in parallel to prepregs which were hot pressed into unidirectional composites. The influence of the glass particle size during the impregnation of fibre bundles and during hot pressing on the homogeneity of the fibre distribution was of special interest, as well as the influence of pressure and temperature on the densification of the composites. Optimum conditions were related to optimum values in the bending strength of the resulting composites. Under the optimum hot-pressing conditions the fibre volume content was varied. It has been shown that the fibre distribution was much more homogeneous when fine-grained glass powder was used for impregnation. At high fibre volume concentrations of the composites the distribution was better than at low concentrations. High fibre concentrations were connected with fracture toughness of the sample, as shown by the three-point bending experiments, whereas samples with low C-fibre concentration showed brittle behaviour.


Fracture Toughness Alkoxide Fibre Volume Volume Content Glass Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Scholze, “Glas, Natur, Struktur und Eigenschaften”, 2. Auflage (Springer-Verlag, Berlin, 1977).Google Scholar
  2. 2.
    N. Claussen, Ber. Dt. Keram. Ges. 54 (12) (1977) 420.Google Scholar
  3. 3.
    N. Claussen, Z. Werkstofft 13 (1982) 138, 185.CrossRefGoogle Scholar
  4. 4.
    N. Claussen, Mater. Sci. Engng. 71 (1985) 23.CrossRefGoogle Scholar
  5. 5.
    R. Schmidberger and T. Haug, Umwandlungsverstärkte Oxidkeramik als Hochleistungsverbundwerkstoff. Proc. (Verbundwerk, Wiesbaden, 1988).Google Scholar
  6. 6.
    N. Claussen and J. Steeb, Z. Werkstofft 7 (1976) 350.CrossRefGoogle Scholar
  7. 7.
    W. Semar, Monolithic and dispersion strengthened cordierite sintered-body: processing sequence and characteristic properties. Proc. (Verbundwerk, Wiesbaden, 1990) 23.1–23.28.Google Scholar
  8. 8.
    S. M. Lee, “International encyclopedia of composites”, Vol. 2 (VCH Publishers, New York, 1990) p. 317Google Scholar
  9. 9.
    K. M. Prewo, J. J. Brennan and G. K. Layden, Ceram. Bull. 65 (2) (1986) 305.Google Scholar
  10. 10.
    R. A. J. Sambell, D.H. Bowen, D. C. Phillips and A. Briggs, J. Mater. Sci. 7 (1972) 663.CrossRefGoogle Scholar
  11. 11.
    D. C. Phillips, “Fibre reinforced ceramics. Handbook of composites 4” (Elsevier Publishers, Amsterdam, 1983).Google Scholar
  12. 12.
    K. M. Prewo, J. Mater. Sci. 17 (1982) 3549.CrossRefGoogle Scholar
  13. 13.
    J. A. Cornie, Y. M. Chiang, D. R. Uhlmann, A. Mortensen and J. M. Collins, Ceram. Bull. 65 (2) (1986) 293.Google Scholar
  14. 14.
    R. A. J. Sambell, D. C. Phillips and D. H. Bowen, in Proceedings of the International Conference, organized by the Plastic Institute, February 1974, 105.Google Scholar
  15. 15.
    D. C. Phillips, R. A. J. Sambell and D. H. Bowen, J. Mater. Sci. 7 (1972) 1454.CrossRefGoogle Scholar
  16. 16.
    K. M. Prewo and J. J. Brennan, J. Mater. Sci. 17 (1982) 1201.CrossRefGoogle Scholar
  17. 17.
    J. F. Bacon and K. M. Preow, Research on graphite reinforced glass matrix composites, NASA contract report 145245; UTRC (1977).Google Scholar
  18. 18.
    D. M. Dawson, European patent application 0219249 (1986).Google Scholar
  19. 19.
    D. M. Dawson, R. F. Preston and A. Purser, Silicates Industriels, 9/10 (1988) 129.Google Scholar
  20. 20.
    R. W. Davidge and J. J. R. Davies, Int. J. High Technol. Ceram. 4 (1988) 341.CrossRefGoogle Scholar
  21. 21.
    D. C. Phillips and R. W. Davidge, Brit. Ceram. Trans. J. 85 (1986) 123.Google Scholar
  22. 22.
    M. Rosensaft and G. Maron, J. Comp. Tech. Res. 7 (1985) 12.CrossRefGoogle Scholar
  23. 23.
    M. Gürtler, A. Weddigen and G. Grathwohl, Mat.-wiss. und Werkstofftechn. 20 (1989) 291.CrossRefGoogle Scholar
  24. 24.
    H. Hegeler and R. Brückner, J. Mater. Sci. 24 (1989) 1191.CrossRefGoogle Scholar
  25. 25.
    W. Pannhorst, M. Spallek, R. Brückner, H. Hegeler, C. Reich, G. Grathwohl, B. Meier and D. Spelman, Ceram. Engng. Sci. Proc. 11 (7–8) (1990) 947.CrossRefGoogle Scholar
  26. 26.
    R. Brückner, in Proceedings of the Second International Symposium on New Glass, November 1989 (Association of New Glass Industries, Tokyo, 1989) p. 75.Google Scholar
  27. 27.
    A. W. Christiansen, J. Lilley and J. B. Shortall, Fibre Sci. Technol. 7 (1974) 1.CrossRefGoogle Scholar
  28. 28.
    S. R. Levitt, J. Mater. Sci. 8 (1973) 793.CrossRefGoogle Scholar
  29. 29.
    A. Khalili and K. Kromp, in Tagungsband des 2. Symp. für Materialforschung 1991, p. 255.Google Scholar
  30. 30.
    P. M. Benson, K. E. Spear and C. G. Pantano, Mater. Sci. Res. 21 (1987) 415.Google Scholar
  31. 31.
    J. J. R. Davies, R. F. Preston, R. J. Lee and K. N. Walls, in Proceedings of the International Conference on New Materials and their Applications, University of Warwick, UK, 1990 (Inst. Phys. Conf. Ser. No. 111).Google Scholar
  32. 32.
    E. Fitzer, H. Münch, D. Nieder, G. Schoch, T. Stumm and R. Zimmermann-Chopin, Hochfeste faserverstärkte Verbundwerkstoffe mit keramischer Matrix. BMFT-Abschlußbericht 1989.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. Klug
    • 1
  • R. Brückner
    • 1
  1. 1.Institut für Nichtmetallische WerkstoffeTU BerlinGermany

Personalised recommendations