Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3461–3468 | Cite as

The relevance of the surface structure and surface chemistry of carbon fibres in their adhesion to high temperature thermoplastics

Part II Surface chemistry
  • G. Krekel
  • K. J. Hüttinger
  • W. P. Hoffman
Article

Abstract

The paper is concerned with the surface chemistry of several different carbon fibres subjected to various surface treatments. The microstructure and nanostructures of these fibres were investigated in the Part I of this series of papers. For analysis of the surface chemistry of the fibres, X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) were employed; the first method was used for identification and semi-quantitative determination of functional surface groups, while the second method was used for a quantitative determination of these groups. The possible interactions of the various carbon-fibre surfaces due to different surface treatments (and therefore to different functional groups) were analysed by wetting studies using the Wilhelmy technique and aqueous solutions of different pH values as test liquids. By variation of the pH value of the test liquids, the distinct acid-base complexes that formed with the functional groups were identified. The same test liquids were used for characterization of the surface chemistry of the high-temperature thermoplastics (polycarbonate and polyethersulphone) used as matrix materials in the fabrication of the composites in this study. Acid-base interactions at the carbon-fibre surfaces are mainly determined by carboxylic groups of different acidity. The concentration of these groups as determined by desorption of carbon dioxide up to 500 °C is shown to be directly proportional to the measured work of adhesion of each group.

Keywords

Carbon Dioxide Acidity Carbon Fibre Polycarbonate Carboxylic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Krekel, K. J. Hüttinger, W. P. Hoffman and D. S. Silver, J. Mater. Sci, 28 (1993).Google Scholar
  2. 2.
    H. P. Boehm and G. Bewer, Extended Abstracts of the Fourth London International Carbon and Graphite Conference, London, September 1974 (Society of Chemical Industry, 1974) p. 344.Google Scholar
  3. 3.
    H. P. Boehm, E. Diehl, W. Heck and R. Sappock, Angew. Chem. 76 (1964) 742.CrossRefGoogle Scholar
  4. 4.
    H. P. Boehm, Kolloid Z. Z. Polym. 227 (1968) 17.CrossRefGoogle Scholar
  5. 5.
    Idem., Adv. Catalysis 16 (1966) 179.Google Scholar
  6. 6.
    H. P. Boehm and M. Voll, Carbon 8 (1970) 227–240, idem., ibid. 8 (1970) 741–752, idem., ibid. 9 (1971) 473–480, and idem., ibid. 9 (1971) 481–488.CrossRefGoogle Scholar
  7. 7.
    J. B. Donnet and R. C. Bansal, “Carbon fibres” (Marcel Dekker, New York, 1984).Google Scholar
  8. 8.
    P. Ehrburger, in “Carbon fibres, filaments and composites”, edited by J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker and K. J. Huttinger (Kluwer Academic, Dordrecht, 1990) p. 147.CrossRefGoogle Scholar
  9. 9.
    D. W. Mckee and V. J. Mimeault, Chem. Phys. Carbon 8 (1973) 151.Google Scholar
  10. 10.
    B. R. Puri, Chem. Phys. Carbon 6 (1971) 191.Google Scholar
  11. 11.
    V. A. Garten and D. E. Weiss, Rev. Pure Appl. Chem. 7 (1957) 69.Google Scholar
  12. 12.
    Idem., Aust. J. Chem. 10 (1959) 309.CrossRefGoogle Scholar
  13. 13.
    K. Konishita, “Electro-chemical and physico-chemical properties of carbon” (Wiley, New York, 1988).Google Scholar
  14. 14.
    H. P. Boehm, Angew. Chemie 78 (1966) 717.Google Scholar
  15. 15.
    E. Papirer, J. Dentzer, S. Li and J. B. Donnet, Carbon 29 (1991) 69–72.CrossRefGoogle Scholar
  16. 16.
    S. S. Barton and B. H. Harrison, Carbon 13 (1975) 283–288.CrossRefGoogle Scholar
  17. 17.
    B. R. Puri and R. C. Bansal, ibid. 1 (1964) 451, idem., ibid. 1 (1964) 457.CrossRefGoogle Scholar
  18. 18.
    P. Denison, F. R. Jones and J. F. Watts, J. Phys. D 20 (1987) 306–310.CrossRefGoogle Scholar
  19. 19.
    Y. Nakayama, F. Soeda and A. Ishitani, Carbon 28 (1990) 21–26.CrossRefGoogle Scholar
  20. 20.
    A. Proctor and P. M. A. Sherwood, J. Electron Spectrosc. Related Phenom. 27 (1982) 39–56.CrossRefGoogle Scholar
  21. 21.
    Idem., Carbon 21 (1983) 53–59.CrossRefGoogle Scholar
  22. 22.
    Idem. Sur. Interface Anal. 4 (1982) 212–219.CrossRefGoogle Scholar
  23. 23.
    C. Kozlowski and P. M. A. Sherwood, J. Chem. Soc., Faraday Trans, I 80 (1984) 2099–2107., idem., ibid. 81 (1985) 2745–2756.CrossRefGoogle Scholar
  24. 24.
    Idem. Carbon 25 (1987) 751–760.CrossRefGoogle Scholar
  25. 25.
    F. Hopfgarten, Extended Abstracts of the thirteenth Biennial Conference on Carbon, Irvine, CA., 1977 (American Carbon Society, 1977) 288–289.Google Scholar
  26. 26.
    A. G. Bayer, Product information, Makrolon, Technische Kunststoffe von Bayer, Leverkusen (1988).Google Scholar
  27. 27.
    Idem., Product information, Ultrason, BASF Kunststoffe, kLudwigshafen (1989).Google Scholar
  28. 28.
    L. A. Wilhelmy, Ann. Physik 119 (1863) 177.CrossRefGoogle Scholar
  29. 29.
    Â. Miller, L. S. Penn and S. Hedvat, Colloids Surf. 6 (1983) 49.CrossRefGoogle Scholar
  30. 30.
    K. J. Hüttinger, in “Carbon fibres, filaments and composites”, edited by J. L. Figueiredo et al. (Kluwer Academic, Dordrecht, 1990) 245.CrossRefGoogle Scholar
  31. 31.
    W. A. Zisman, in “Contact angle, wettability, and adhesion”, edited by R. F. Could, American Chemical Society, Washington DC, ACS Advanced Chemistry Series, Vol. 43 (1964) p. 1.Google Scholar
  32. 32.
    H. Harttig, PhD thesis, University of Karlsruhe (1982).Google Scholar
  33. 33.
    E. Fitzer, F. V. Sturm and R. Weiss, Extended Abstracts of the Sixteenth Biennial Conference on Carbon, University of California, San Diego, July, 1983 (American Carbon Society, 1983) 494–496.Google Scholar
  34. 34.
    E. Ehrburger, J. J. Herque and J. -B. Donnet, Proceedings of the Fifth International Conference on Carbon and Graphite, Soc. Chem. Ind., London, September 1976 (1976) 201–203.Google Scholar
  35. 35.
    K. J. Hüttinger, S. Höhmann-Wien and M. Seiferling, Carbon 29 (1991) 449–455.CrossRefGoogle Scholar
  36. 36.
    K. J. Hüttinger, S. Höhmann-Wien and G. Krekel, ibid. 29 (1991) 1281–1286.CrossRefGoogle Scholar
  37. 37.
    Idem. J. Adhesion Sci. Tech. 6 (1992) 317–331.CrossRefGoogle Scholar
  38. 38.
    F. M. Fowkes, in “Physico-chemical aspects of polymer surfaces”, Vol. 2 (Plenum Press, New York, 1983) p. 583.Google Scholar
  39. 39.
    Idem. J. Adhesion Sci. Tech. 1 (1987) 7.CrossRefGoogle Scholar
  40. 40.
    L. A. Girifalco and R. J. Good, J. Phys. Chem. 61 (1957) 904.CrossRefGoogle Scholar
  41. 41.
    G. Krekel, PhD thesis, University of Karlsruhe (1992).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. Krekel
    • 1
  • K. J. Hüttinger
    • 1
  • W. P. Hoffman
    • 2
  1. 1.Institut für Chemische TechnikUniversität KarlsruheKarlsruheGermany
  2. 2.Phillips LaboratoryOLAC PLRKFEEdwardsUSA

Personalised recommendations