Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3451–3457 | Cite as

FeCl3-doped polyvinylidene fluoride

Part I Interpolaron hopping and optical properties
  • A. Tawansi
  • H. I. Abdel-Kader
  • M. El-Zalabany
  • E. M. Abdel-Razek
Article

Abstract

Infrared (350–4000 cm−1) and optical (1.15×104–2.95×104cm−1) spectra, differential thermal analysis (DTA) and d.c. electrical resistivity of FeCl3- doped polyvinylidene fluoride (PVDF) films, over the doping mass fraction range 0 ⩽ w ⩽ 0.40, have been measured. The i.r. spectra provided evidence of: (a) the presence of both α and γ phases in the undoped, and a γ phase in the doped PVDF films; (b) a head-to-head content of 20%; and (c) a different doping mode beyond a 0.25 doping level. The optical spectra resulted in two induced energy bands, and a probable interband electronic transition, due to doping. Dipole relaxation and premelting endothermic peaks were identified by DTA. Electrical conduction is thought to proceed by interpolaron hopping among the polaron and bipolaron states induced by doping. The hopping distance, Ro, is calculated according to the Kuivalainen model. A numerical equation is adopted to formulate the dependence of Roon doping level and temperature. It is found that Ro< CC separation length. This implies that, in doped PVDF, charge carrier hopping is not an intrachain process.

Keywords

Charge Carrier Mass Fraction Electrical Resistivity PVDF Differential Thermal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kawai, Jpn. J. Phys. 8 (1969) 975.CrossRefGoogle Scholar
  2. 2.
    A. M. Glass, J. H. McRee and J. G. Bergman Jr, J. Appl. Phys. 42 (1971) 5219.CrossRefGoogle Scholar
  3. 3.
    D. K. Das-Gupta, K. Doughty and R. S. Brockley, J. Phys. D: Appl. Phys. 13 (1980) 2101.CrossRefGoogle Scholar
  4. 4.
    R. M. Faria, J. S. Nogueira and N. Alves, ibid. 25 (1992) 1518.CrossRefGoogle Scholar
  5. 5.
    J. E. McKinner, G. T. Davis and M. G. Broadhurst, J. Appl. Phys. 51 (1980) 1676.CrossRefGoogle Scholar
  6. 6.
    F. I. Mopsik and A. S. De Reggi, Appl. Phys. Lett. 44 (1984) 65.CrossRefGoogle Scholar
  7. 7.
    M. Kobayashi, K. Tashiro and H. Tadokoro, Macromolecules 8 (1975) 158.CrossRefGoogle Scholar
  8. 8.
    R. Zhang and P. L. Taylor, J. Chem. Phys. 94 (1991) 3207.CrossRefGoogle Scholar
  9. 9.
    A. Tawansi, H. I. Abdel-Kader, W. Balachandran and E. M. Abdel-Razek, J. Mater. Sci. In Press.Google Scholar
  10. 10.
    A. Tawansi, N. Kinawy and M. El-Mitwally, ibid. 24 (1989) 2497.CrossRefGoogle Scholar
  11. 11.
    I. Fleming and D. H. Williams, “spectroscopic Methods In Organic Chemistry” (McGraw-Hill, New York, 1966) pp. 56.Google Scholar
  12. 12.
    G. Zerbi, Pure & Appl. Chem. 26 (1971) 499.CrossRefGoogle Scholar
  13. 13.
    M. A. Bachmann, W. L. Gordon and J. B. Lando, J. Appl. Phys. 50 (1979) 6106.CrossRefGoogle Scholar
  14. 14.
    R. Hasegawa, M. Kobayashi and H. Tadokoro, Polym. J. 3 (1972) 591.CrossRefGoogle Scholar
  15. 15.
    R. C. Newman, “infrared Studies Of Crystal Defects” (Taylor and Francis, London, 1973) pp. 89.Google Scholar
  16. 16.
    P. Kuivalainen, H. Stubb, H. Isotlo, P. Yli and C. Holmstrom, Phys. Rev. B 31 (1985) 7900.CrossRefGoogle Scholar
  17. 17.
    S. Eliasson, J. Phys. D: Appl Phys. 18 (1985) 275.CrossRefGoogle Scholar
  18. 18.
    P. C. Mehendra, S. Cband, ibid. 16 (1983) 185.CrossRefGoogle Scholar
  19. 19.
    M. Latour, K. Anis and R. M. Paria, ibid. 22 (1989) 806.CrossRefGoogle Scholar
  20. 20.
    N. F. Mott and R. W. Gurney, “electronic Processes In Ionic Crystals” (Oup, London, 1940) pp. 34.Google Scholar
  21. 21.
    K. C. Kao, J. Phys. D: Appl. Phys. 17 (1984) 1433.CrossRefGoogle Scholar
  22. 22.
    A. L. Efros and B. I. Shklovskii, J. Phys. C 8 (1979) 149.Google Scholar
  23. 23.
    S. Kivelson, Phys. Rev. B 25 (1982) 3798.CrossRefGoogle Scholar
  24. 24.
    Idem., Mol. Cryst. Liq. Cryst. 77 (1981) 65.CrossRefGoogle Scholar
  25. 25.
    J. L. Bredas, R. R. Chance and R. Silbey, Phys. Rev. B 26 (1982) 5843.CrossRefGoogle Scholar
  26. 26.
    S. Kivelson, Phys. Rev. Lett. 46 (1981) 1344.CrossRefGoogle Scholar
  27. 27.
    A. Tawansi, S. El-Konsol, A. F. Basha and M. M. Morsi, Acta Physica Hungarica 54(3–4) (1983) 221.Google Scholar
  28. 28.
    B. Movaghar, B. Pohlmann and W. Schimacher, Phil. Mag. B 41 (1980) 49.CrossRefGoogle Scholar
  29. 29.
    A. Tawansi, M. D. Migahed and M. I. A. El-Hamid, J. Phys. D: Appl. Phys. 20 (1987) 772.CrossRefGoogle Scholar
  30. 30.
    G. Pfister and H. Scher, Adv. Phys. 27 (1978) 747.CrossRefGoogle Scholar
  31. 31.
    G. Pfister and M. Morgan, Phil. Mag. B 41 (1980) 191.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Tawansi
    • 1
  • H. I. Abdel-Kader
    • 1
  • M. El-Zalabany
    • 1
    • 2
  • E. M. Abdel-Razek
    • 1
  1. 1.Department of Physics, Faculty of ScienceMansoura UniversityEgypt
  2. 2.Department of Electrical Engineering, Faculty of EngineeringMansoura UniversityEgypt

Personalised recommendations