Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3415–3418 | Cite as

Microwave drying of boehmite sol intercalated smectites

  • K. G. K. Warrier
  • P. Mukundan
  • S. K. Ghosh
  • S. Sivakumar
  • A. D. Damodaran
Article

Abstract

Monohydroxy aluminium oxide (boehmite) intercalated (cross-linked) smectites (SCLS) have been prepared from an aqueous suspension containing sodium mono-ion-exchanged bentonite (2 wt%) and boehmite (AlOOH) sol at pH 3.5 and at 32 °C. The SCLS has been separated by centrifugation and repeated washing. The intercalated smectite was dried in an oven at 60 °C over a period of 24 h and also in a microwave oven of 2.45 GHz frequency and 600 W power over a range of 3–15 min. Both samples have identical thermal and electrical properties. However, the microwave-dried samples have a distinctly higher surface area of 120 m2 g−1, stable up to 650 °C with a marginal reduction to 116 m2 g−1 compared with 94 m2g−1 for the oven-dried sample. Similarly there was clear difference in the morphological features of the two samples, the air-dried sample having a close packed structure while the microwave one is delaminated and porous.

Keywords

Polymer Aluminium Microwave Centrifugation Morphological Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Figueraus, Catal. Rev. Sci. Eng. 30 (1988) 457.CrossRefGoogle Scholar
  2. 2.
    T. J. Pinnavaia, Science 220 (1983) 4595.CrossRefGoogle Scholar
  3. 3.
    D. Plee, F. Borg, L. Gatineau and J. J. Fripiat. J. Am. Chem. Soc. 107 (1985) 2362.CrossRefGoogle Scholar
  4. 4.
    Mario L. Ocelli, in “Proceedings of the International Clay Conference”, Denver, edited by L. G. Schultz, H. Van Olphen and F. A. Mumpton (The Clay Mineral Society, Bloomington, IN, 1987) p. 319.Google Scholar
  5. 5.
    S. K. Ghosh, P. Mukundan, K. G. K. Warrier and A. D. Damodaran, J. Mater. Sci. Lett. 10 (1991) 1193.CrossRefGoogle Scholar
  6. 6.
    S. Yamanaka and M. Hattori, in “Chemistry of Microporous Crystals”, Proceedings of the International Symposium on Chemistry of Microporous Crystals. Tokyo, 26–29 June 1990, edited by T. Inui, S. Namba and T. Tatsumi (Elsevier, Tokyo, 1991) p. 89.Google Scholar
  7. 7.
    S. Yamanaka and G. W. Brindley, Clays Clay Miner. 27 (1979) 119.CrossRefGoogle Scholar
  8. 8.
    R. Molina, A. Vieira-Coelho and G. Poncelet, ibid. 40 (1992) 480.CrossRefGoogle Scholar
  9. 9.
    D. W. E. Vaughan, Catal. Today 2 (1988) 187.CrossRefGoogle Scholar
  10. 10.
    K. Thakhama, M. Yokoyama and S. Yamanaka, J. Mater. Sci. 27 (1992) 1297.CrossRefGoogle Scholar
  11. 11.
    D. Michael, P. Mingos and D. R. Baghurst, Chem. Soc. Rev. 20 (1991) 1.CrossRefGoogle Scholar
  12. 12.
    A. C. Pierre and D. R. Uhlmann, in “Ultrastructure processing of advanced ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (Wiley, Interscience, New York, 1988) p. 865.Google Scholar
  13. 13.
    S. Bhatacharjee, Ind. J. Pure Appl. Phys. 9 (1971) 1054.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. G. K. Warrier
    • 1
  • P. Mukundan
    • 1
  • S. K. Ghosh
    • 1
  • S. Sivakumar
    • 1
  • A. D. Damodaran
    • 1
  1. 1.Regional Research Laboratory (CSIR)ThiruvananthapuramIndia

Personalised recommendations