Journal of Materials Science

, Volume 29, Issue 13, pp 3403–3407 | Cite as

Study on the electrical conductivity and morphology of porous polypyrrole layers prepared electrochemically in the presence of pyridinium chlorochromate

  • S. Košina
  • S. Balúch
  • J. Annus
  • M. Omastová
  • J. Krištín


The electrical conductivity and morphology of thick (up to 3 mm) porous polypyrrole (PPy) layers produced electrochemically from pyrrole in acetonitrile (ACN) solutions have been studied. The electrical conductivity of pressed porous layers ranges from 1 to 10 Scm−1, which is about one order of magnitude less than that in films which were prepared under similar conditions but without PnClCr. Analysis of the temperature dependence of conductivity has confirmed the major role of hopping in relation to tunnelling in charge transport inside the PPy layers even at lower temperatures. Scanning electron microscopy (SEM) showed a globular structure, which is different from the usual cauliflower-like structure of PPy films prepared without any oxidizing agent. Globular particles of about 1–3 μm diameter have been found under a thin smooth crust on the electrode side of the sample. Globular particles form linked chain-like or larger round formations poorly filling the space. Closely packed fibrils of about 20 nm diameter and over 100 nm in length were found inside the aggregates.


Electrical Conductivity Pyridinium Fibril Pyrrole Charge Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Cheung, D. Bloor and G. C. Stevens, J. Mater. Sci. 25 (1990) 3814.CrossRefGoogle Scholar
  2. 2.
    K. Sato, M. Yamaura, T. Hagiwara, K. Murata and M. Tokumoto, Synth. Met. 40 (1991) 35.CrossRefGoogle Scholar
  3. 3.
    G. R. Mitchell, R. Cywinski, S. Mondal and S. J. Sutton, J. Phys. D: Appl. Phys. 22 (1989) 1231.CrossRefGoogle Scholar
  4. 4.
    M. Salmon, A. F. Diaz, A. J. Logan, M. Krounbi and J. Bargon, Mot. Cryst. Liq. Cryst. 83 (1982) 265.CrossRefGoogle Scholar
  5. 5.
    S. Panero, P. Proseperi and B. Scrosati, Electrochimica Acta 32 (1987) 1465.CrossRefGoogle Scholar
  6. 6.
    X. Bi, Y. Yao, M. Wan, P. Wang, K. Xiao, Q. Yang and R. Qian, Makromol. Chem. 186 (1985) 1101.CrossRefGoogle Scholar
  7. 7.
    D. S. Maddison and J. Unsworth, Synth. Metals 30 (1989) 47.CrossRefGoogle Scholar
  8. 8.
    M. Omastová, S. Košina, V. Skákalová and D. Jančula, ibid. 53 (1992) 227.CrossRefGoogle Scholar
  9. 9.
    M. Omastová, M. Lazár and S. Košina, J. Electroanal. Chem. 361 (1993) 169.CrossRefGoogle Scholar
  10. 10.
    P. Sheng, Phys. Rev. B 21 (1980) 2180.CrossRefGoogle Scholar
  11. 11.
    N. F. Mott and E. A. Davis, “Electronic properties in non-crystalline materials”, (Clarendon Press, Oxford, 1979) p. 32.Google Scholar
  12. 12.
    G. B. Street, “Handbook of conducting polymers”, (M. Dekker, New York, 1986) p. 265.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Košina
    • 1
  • S. Balúch
    • 1
  • J. Annus
    • 1
  • M. Omastová
    • 2
  • J. Krištín
    • 3
  1. 1.Department of Chemical Physics, Faculty of Chemical TechnologySTUBratislavaSlovakia
  2. 2.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Faculty of Natural SciencesCentral Laboratory of Electron Optics MethodsBratislavaSlovakia

Personalised recommendations