Journal of Materials Science

, Volume 29, Issue 13, pp 3399–3402 | Cite as

Hydrothermal synthesis of biocompatible whiskers

  • Masahiro Yoshimura
  • Hiroyuki Suda
  • Kengo Okamoto
  • Koji Ioku


The preparation of non-toxic and biocompatible fibres or whiskers is one of the most urgent tasks today, because most of the fibrous materials which have been used (including asbestos which has been used for many years) are thought to be biohazardous. Whiskers of hydroxyapatite (Ca10(PO4)6(OH)2∶HAp), which is expected to be one of the best biocompatible materials, have been successfully synthesized by hydrothermal treatments of beta-tricalcium phosphate (beta-Ca3(PO4)2: beta-TCP) with citric acid. These whiskers were single crystals, elongated along the c-axis, with a length of 20–30 μm and a width of 0.1–1 μm. They were slightly calcium deficient (Ca/P molar ratio = 1.63) and they contained a trace of CO 3 2− in their structure.


Polymer Calcium Phosphate Citric Acid Hydroxyapatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. T. Mossman, J. Bignon, M. Corn, A. Seaton and J. B. L. Gee, Science 247 (1990) 294.CrossRefGoogle Scholar
  2. 2.
    L. Michaels and S. S. Chissick (editors) “Asbestos, Vol. 1, Properties, applications, and hazards” (Wiley, New York, 1979).Google Scholar
  3. 3.
    M. F. Stanton, M. Layard, A. Tegerin, F. Miller, M. May, E. Morgan and A. Smith, J. Natl. Cancer Inst. 67 (1981) 965.Google Scholar
  4. 4.
    F. Pott, Staub-Reinh. Luft, 38 (1978) 486.Google Scholar
  5. 5.
    J. V. Milewski, F. D. Gac, J. J. Petrovic and S. R. Skaggs, J. Mater. Sci. 20 (1985) 1160.CrossRefGoogle Scholar
  6. 6.
    H. Murayama and T. Maeda, Nature 345 (1990) 791.CrossRefGoogle Scholar
  7. 7.
    G. E. Legrov, T. F. Lim, J. Lipowitz and R. S. Reaoch, Amer. Ceram. Soc. Bull. 66 (1987) 363.Google Scholar
  8. 8.
    T. Oota, H. Saito and I. Yamai, J. Cryst. Growth, 46 (1979) 331.CrossRefGoogle Scholar
  9. 9.
    S. Jagota and R. Rouj, ibid. 85 (1987) 527.CrossRefGoogle Scholar
  10. 10.
    M. Egashira, H. Katsuki, S. Takatsuki and H. Iwanaga, Yogyo-Kyokai-shi (in Japanese) 95 (1987) 138.CrossRefGoogle Scholar
  11. 11.
    I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita and T. Kawai, Jpn. J. Appl. Phys. 28 (1989) L1121.CrossRefGoogle Scholar
  12. 12.
    H. Aoki, “Science and medical applications of hydroxyapatite (Japanese Association of Apatite Science, (1991).Google Scholar
  13. 13.
    P. Ducheyne, J. Biomed. Mater. Res.: Applied Biomater. (editors) A 21, (1987) 219.Google Scholar
  14. 14.
    P. Ducheyne, T. Kokubo and C. A. Van blitterswijk (editors) “Bone-bonding biomaterials” (Reed Healthcare Communications, 1992).Google Scholar
  15. 15.
    A. Mortier, J. Lemaitre, L. Rodrique and P. Rouxhet, J. Solid State Chem. 78 (1989) 215.CrossRefGoogle Scholar
  16. 16.
    M. Kinoshita, A. Kishioka, H. Hayashi and S. Itatani, Gypsum, Lime 219 (1989) 23.Google Scholar
  17. 17.
    N. Christiansen and R. E. Riman, Proceedings of the 5th. Scandinavian Symposium on Materials Science (1989) pp. 209–220.Google Scholar
  18. 18.
    B. O. Fowler, Inorg. Chem. 13 (1974) 207.CrossRefGoogle Scholar
  19. 19.
    E. C. Moreno, T. M. Gregory and W. E. Brown, J. Res. Nat. Bur. Stand. A 72 (1968) 773.CrossRefGoogle Scholar
  20. 20.
    A. Perloff and A. S. Posner, Science 124 (1956) 583.CrossRefGoogle Scholar
  21. 21.
    K. Ioku, M. Yoshimura and S. Somiya, Nippon Kagaku Kaishi 9 (1988) 1565.CrossRefGoogle Scholar
  22. 22.
    S. Somiya, K. Ioku and M. Yoshimura, Mater. Sci. Forum 34–36 (1988) 371–378.Google Scholar
  23. 23.
    M. Yoshimura, H. Suda, K. Okamoto and K. Ioku, Nippon Kagaku Kaishi 10 (1991) 3101.Google Scholar
  24. 24.
    N. Asaoka, H. Suda and M. Yoshimura, submitted to Nippon Kagaki Kaishi.Google Scholar
  25. 25.
    N. Balmain, R. Legeros and G. Bonel, Calcif. Tissue Int. 34 (1982) S93.Google Scholar
  26. 26.
    H. Suda, N. Asaoka and M. Yoshimura, in “Bioceramics Vol. 5, Proceedings of the 5th International Symposium on Ceramics in Medicine”, edited by T. Yamamuro, T. Kokubo and T. Nakamura (Kobunsha Kankokai, 1992) pp. 31–34.Google Scholar
  27. 27.
    T. Kawasaki, J. Chromatogr. 544 (1991) 144.CrossRefGoogle Scholar
  28. 28.
    D. R. Simpson, Amer. Miner. 53 (1968) 432.Google Scholar
  29. 29.
    US Environmental Protection Agency, Report to Congress, Study of Asbestos-Containing Materials in Public Buildings (US Environmental Protection Agency, Washington, DC, February 1988), p. 5.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Masahiro Yoshimura
    • 1
  • Hiroyuki Suda
    • 1
  • Kengo Okamoto
    • 2
  • Koji Ioku
    • 3
  1. 1.Research Laboratory of Engineering MaterialsTokyo Institute of TechnologyYokohamaJapan
  2. 2.Mitsubishi Materials Co. Ltd.Chichibu-gunJapan
  3. 3.Faculty of EngineeringYamaguchi UniversityUbeJapan

Personalised recommendations