Journal of Materials Science

, Volume 29, Issue 13, pp 3377–3383 | Cite as

A model for particle cavitation in rubber-toughened plastics

  • C. B. Bucknall
  • A. Karpodinis
  • X. C. Zhang


An energy-balance criterion for cavitation of rubber particles, which was proposed in an earlier paper [A. Lazzeri and C. B. Bucknall, J. Mater. Sci.28 (1993) 6799], is developed by including a term for the energy stored in the matrix and released during expansion of the voids. The model relates the critical volume strain at cavitation to the radius of the rubber particle, and to the shear modulus, surface energy and failure strain of the rubber. The effects of temperature, strain rate and type of stress field upon cavitation behaviour and the resulting toughness of the two-phase polymer are discussed in terms of the model.


Polymer Rubber Surface Energy Cavitation Shear Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Ramsteiner, Kunststoffe, 73, (1983) 148.Google Scholar
  2. 2.
    F. Ramsteiner and W. Heckmann, Polym. Commun. 26 (1985) 199.Google Scholar
  3. 3.
    C. B. Bucknall, P. Heather and A. Lazzeri, J. Mater. Sci. 24 (1989) 1489.CrossRefGoogle Scholar
  4. 4.
    F. Speroni, E. Castoldi, P. Fabbri and T. Casiraghi, J. Mater. Sci. 24 (1989) 2165.CrossRefGoogle Scholar
  5. 5.
    A. J. Oostenbrink, L. J. Molenaal and R. J. Gaymans, Polymer Processing Society 6th Annual Meeting, Nice, France, 18 April 1990.Google Scholar
  6. 6.
    A. J. Oshinski, H. Keskkula and D. R. Paul, Polymer 33 (1992) 268.CrossRefGoogle Scholar
  7. 7.
    K. Dijkstra, PhD thesis, University of Twente, Netherlands (1993).Google Scholar
  8. 8.
    P. Beahan, A. Thomas and M. Bevis, J. Mater. Sci. 11 (1976) 1207.CrossRefGoogle Scholar
  9. 9.
    A. S. Argon, R. E. Cohen, O. S. Gebizlioglu and C. E. Schwier, in “Advances in Polymer Science 52/53”, edited by H. H. Kausch (Springer, Heidelberg, 1983).Google Scholar
  10. 10.
    D. S. Parker, H. J. Sue, J. Huang and A. F. Yee, Polymer 31 (1990) 2267.CrossRefGoogle Scholar
  11. 11.
    H. J. Sue, J. Huang and A. F. Yee, Polymer 33 (1992) 4868.CrossRefGoogle Scholar
  12. 12.
    H. Breuer, F. Haaf and J. Stabenow, J. Macromol. Sci.-Phys. B14 (1977) 387.CrossRefGoogle Scholar
  13. 13.
    A. Tse, E. Shin, A. Hiltner, E. Baer and R. Laakso, J. Mater. Sci. 26 (1991) 2823.CrossRefGoogle Scholar
  14. 14.
    W. D. Bascom, R. L. Cottington and A. Siebert, Appl. Polym. Symp. 32 (1977) 165.Google Scholar
  15. 15.
    A. J. Kinloch, S. J. Shaw, D. A. Tod and D. L. Hunston, Polymer 24 (1983) 1341.CrossRefGoogle Scholar
  16. 16.
    R. A. Pearson and A. F. Yee, J. Mater. Sci. 21 (1986) 2475.CrossRefGoogle Scholar
  17. 17.
    A. F. Yee, R. A. Pearson, in “Fractography and failure mechanisms in polymers and composites”, edited by A. C. Roulin-Moloney (Elsevier, London, 1989).Google Scholar
  18. 18.
    H. Y. Sue, J. Mater. Sci. 27 (1992) 3098.CrossRefGoogle Scholar
  19. 19.
    X. C. Zhang, PhD thesis, Cranfield University, Bedford (1993).Google Scholar
  20. 20.
    A. Lazzeri and C. B. Bucknall, J. Mater. Sci. 28 (1993) 6799.CrossRefGoogle Scholar
  21. 21.
    N. C. Liu and W. E. Baker, Poly. Eng. Sci. 22 (1987) 3417.Google Scholar
  22. 22.
    H. J. Sue and E. I. Garcia-Meitin, J. Polym. Sci. Part B: Polym. Phys. 31 (1993) 595.CrossRefGoogle Scholar
  23. 23.
    H. Reismann and P. S. Pawlik, “Elasticity: Theory and Applications”, (Wiley, New York, 1980).Google Scholar
  24. 24.
    D. C. Edwards, J. Mater. Sci. 25 (1992) 4175.CrossRefGoogle Scholar
  25. 25.
    H. Vangerko and L. R. G. Treloar, J. Phys. D: Appl. Phys. 11 (1978) 1969.CrossRefGoogle Scholar
  26. 26.
    J. Brandrup and E. H. Immergut, “Polymer Handbook”, 3rd Edn (Wiley, New York, 1989).Google Scholar
  27. 27.
    E. J. Kramer, Polym. Eng. Sci. 19 (1984) 761.CrossRefGoogle Scholar
  28. 28.
    R. J. Gaymans, R. J. M. Borggreve and A. J. Oostenbrink, Makromol. Chem, Macromol. Symp. 38 (1990) 125.CrossRefGoogle Scholar
  29. 29.
    R. J. M. Borggreve, R. J. Gaymans, J. Schuijer and J. F. Ingen-Housz, Polymer 28 (1987) 1489.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. B. Bucknall
    • 1
  • A. Karpodinis
    • 1
  • X. C. Zhang
    • 1
  1. 1.Advanced Materials GroupCranfield UniversityBedfordUK

Personalised recommendations