Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3690–3696 | Cite as

Ductility improvement in iron aluminides

  • A. Bahadur
  • B. R. Kumar
  • O. N. Mohanty
Papers

Abstract

Excellent high temperature properties of intermetallic aluminides recommend their use for structural applications in sulphurous atmospheres. Interest was not sustained in them because of their brittleness at ambient temperatures. Fe3Al based alloys (air induction melted) were taken up to study the effect of deviations from stoichiometry (both sub and super), third and fourth alloy additions, B, Ti (micro as well as macro), on physical and mechanical properties (at ambient temperatures). The columnar grains observed in sub and stoichiometric compositions were found to become equiaxed on additions of alloy. The microstructures became finer on hot forging and rolling. The hot workability of these alloys increased from 65 to 85% at 973 K on B, Ti additions. The ultimate tensile strength (UTS) and per cent, elongation E increased to 80 kg mm−2, 3.0% and 94 kg mm−2, 5%, respectively, for sub and stoichiometric alloys on B and Ti additions. The superstoichiometric alloys displayed dendritic structure and could not be hot worked due to cracking during forging, even after additions of alloys. The stoichiometric Fe3Al alloy with B and Ti additions exhibited the best properties under the experimental conditions.

Keywords

Ductility Ultimate Tensile Strength Fe3Al Dendritic Structure Stoichiometric Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Aitken, in “Intermetallic Compounds”, edited by J. H. Westbrook (Wiley, New York, 1967) pp. 491–516.Google Scholar
  2. 2.
    M. J. Marcinkowski, M. E. Taylor and F. X. Kayser, J. Mater. Sci. 10 (1975) 406.CrossRefGoogle Scholar
  3. 3.
    E. R. Slaughter and S. K. Das, in “Rapid Solidification Principles and Technologies II”, edited by R. Mehrabian, B. H. Kear and M. Cohen, (Claitor's, Baton Rouge, 1980) pp. 354–363.Google Scholar
  4. 4.
    M. G. Mendiratta, S.K. Ehlers, D. K. Chatterjee and H. A. Lipsitt, in “Rapid Solidification Processing Principles and Technologies III”, edited by R. Mehrabian (National Bureau of Standards, Washington, DC 1983) p. 240.Google Scholar
  5. 5.
    N. S. Stoloff, Int. Met. Rev. 29 (1984) 123.CrossRefGoogle Scholar
  6. 6.
    C. T. Liu and J. O. Stiegler, Science 226 (1984) 636.CrossRefGoogle Scholar
  7. 7.
    S. Takeuchi and E. Kuramoto, Acta Metall. 21 (1973) 415.CrossRefGoogle Scholar
  8. 8.
    D. P. Pope, Phil. Mag. 25 (1972) 917.CrossRefGoogle Scholar
  9. 9.
    M. J. Marcinkowski, N. J. Olson and K. Sadananda, Phys. Status Solidi 17a (1973) 89.CrossRefGoogle Scholar
  10. 10.
    N. S. Stoloff, in “Symposium, High Temperature Ordered Intermetallic Alloys” Vol. 39, edited by C. C. Koch, C. T. Liu and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985) p. 3.Google Scholar
  11. 11.
    J. H. Westbrook, Met. Rev. 9 (1965) 415.Google Scholar
  12. 12.
    M. J. Marcinkowski, E. S. P. Das and K. Sadananda, Phys. Status Solidi 17a (1973) 167.Google Scholar
  13. 13.
    C. C. Koch, in “Symposium, High Temperature Ordered Intermetallic Alloys” Vol. 39, edited by C. C. Koch, C. T. Liu and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985) p. 397.Google Scholar
  14. 14.
    M. Mendiratta, H. M. Kim and H. A. Lipsitt, Metall. Trans. 15A (1984) 395.CrossRefGoogle Scholar
  15. 15.
    E. M. Schulson, in “Symposium, High Temperature Ordered Intermetallic Alloys” Vol. 39, edited by C. C. Koch, C. T. Liu and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985.) p. 193.Google Scholar
  16. 16.
    H. Inouye, ibid. p. 255.Google Scholar
  17. 17.
    P. Morgand, P. Mouturat and G. Sainfort, Acta Metall. 16 (1968) 867.CrossRefGoogle Scholar
  18. 18.
    Leamy and Kayser, Phys. Status Solidi 34 (1969) 765.CrossRefGoogle Scholar
  19. 19.
    R. C. Crawford. I. L. Ray and O. J. H. Cockayne, Phil. Mag. 27 (1973) 2.CrossRefGoogle Scholar
  20. 20.
    M. G. Mendiratta, S. K. Ehlers, D. K. Chatterjee and H. A. Lipsitt, Metall. Trans. 18A (1987) 283.CrossRefGoogle Scholar
  21. 21.
    C. G. McKamey, J. A. Horton and C. T. Liu, Scripta Metall 22 (1988) 1679.CrossRefGoogle Scholar
  22. 22.
    C. T. Liu, E. H. Lee and C. G. McKamey, ibid 23 (1989) 875.CrossRefGoogle Scholar
  23. 23.
    C. T. Liu, C. G. McKamey and E. H. Lee, ibid. 24 (1990) 385.CrossRefGoogle Scholar
  24. 24.
    G. M. Bond, I. M. Robertson and H. K. Birnbaum, Acta Metall. 37 (1989) 1407.CrossRefGoogle Scholar
  25. 25.
    J. H. DEVAN, Personal Communication, Oak Ridge National Laboratory, (Oakridge, TN, 1990).Google Scholar
  26. 26.
    C. A. Hippsley and M. Strangwood, Mater. Sci. Technol. 8 (1992) 350.CrossRefGoogle Scholar
  27. 27.
    C. T. Liu and H. Inouye, Metall. Trans. 10A (1979) 1515.CrossRefGoogle Scholar
  28. 28.
    C. T. Liu, Int. Metall. Rev. 29 (1984) 168.CrossRefGoogle Scholar
  29. 29.
    C. T. Liu, C. L. White and J. A. Horton, Acta Metall. 33 (1985) 213.CrossRefGoogle Scholar
  30. 30.
    W. Justusson, V. F. Zackay and E. R. Morgan, Trans. ASM 49 (1957) 905.Google Scholar
  31. 31.
    E. M. Shulson and D. R. Barker, Scripta Metall. 17 (1983) 519.CrossRefGoogle Scholar
  32. 32.
    R. Gibala, in “Symposium, High Temperature Ordered Intermetallic Alloys” Vol. 39, edited by C. C. Koch, C. T. Liu and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985) p. 319.Google Scholar
  33. 33.
    M. Mclean, “Directionally Solidified Materials for High Temperature Service” (The Metals Society, London, 1983).Google Scholar
  34. 34.
    M. H. Yoo, S. C. Sass, C. I. Fu, M. J. Mills, D. M. Dimiduk and E. P. George, Acta Metall. Mater. 41 (1993) 987.CrossRefGoogle Scholar
  35. 35.
    R. H. Titron, K. M. Vedula and G. G. Anderson, in “Symposium, High Temperature Ordered Intermetallic Alloys” Vol. 39, edited by C. C. Koch, C. T. Liu and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1985) p. 309.Google Scholar
  36. 36.
    K. Aoki and O. Izumi, J. Jpn. Inst. Metals 43 (1979) 1190.CrossRefGoogle Scholar
  37. 37.
    E. M. Schulson and I. Baker, in “Ordered Intermetallics-Physics, Metals and Mechanical Behaviour”, edited by C. T. Liu, R. W. Cahn and G. Sauthoff, NATO Advances in Research Workshop, Irsee Germany, 1991, NATO ASI Series E: Appl. Services, Vol. 213 (Kluwer Academic, Boston, 4A, 1992) p. 371.Google Scholar
  38. 38.
    C. T. Liu, Scripta Metall. Mater. 25 (1991) 1231.CrossRefGoogle Scholar
  39. 39.
    J. O. Steigler and C. T. Liu, in “Second Supplementary Volume of the Encyclopedia of Materials Science and Engineering”, edited by R. W. Cohn (Pergamon Press, Oxford, 1988) p. 3.Google Scholar
  40. 40.
    C. G. McKamey and J. A. Horton, Metall. Trans. 20A (1989) 751.CrossRefGoogle Scholar
  41. 41.
    U. Prakash, R. A. Buckley and H. Jones, Mater. Sci. Technol. 9 (1993) 16.CrossRefGoogle Scholar
  42. 42.
    K. Wambach, J. Peters and H. J. Grabke, Mater. Sci. Eng. 88 (1987) 205.CrossRefGoogle Scholar
  43. 43.
    S. Taniguchi, T. Shibata and H. Tsuruoka, Trans. Jpn Inst Met. 28 (1987) 788.CrossRefGoogle Scholar
  44. 44.
    M. G. Mendiratta and H. A. Lipsitt, in “Materials Research Society Symposium Proceedings” (Materials Research Society, Pittsburgh, PA, 1985) p. 39.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. Bahadur
    • 1
  • B. R. Kumar
    • 1
  • O. N. Mohanty
    • 1
  1. 1.National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations