Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3652–3657 | Cite as

Hardening of 316L stainless steel by laser surface alloying

  • F. Laroudie
  • C. Tassin
  • M. Pons
Papers

Abstract

The goal of this study is to investigate different hardening routes for 316L stainless steel by laser surface alloying. We have investigated the formation of iron-chromium carbides by SiC or carbon incorporation, the alloying with submicronic particles of TiC and the precipitation of titanium carbide from mixtures of Ti and SiC. For each hardening route we present the microstructures and the hardness of the processed surface alloys and the conditions leading to the best compromise between highest hardness, best homogeneity and lowest occurrence of cracks. From these results it can be reasoned that hardening by iron-chromium carbides is the best hardening route and that this surface alloy might be a good candidate for tribological applications.

Keywords

Precipitation Microstructure Titanium Carbide Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ohring, “The materials science of thin films” (Academic Press, London, 1992).Google Scholar
  2. 2.
    P.A. Molian, in “Surface modification technologies”, edited by T.S. Sudarshan (Marcel Dekker, Inc., New York, 1989) p. 421.Google Scholar
  3. 3.
    A.Y. Fasasi, S.K. Roy, M. Pons, A. Galerie, D. Sibuet and M. Caillet, in MAT-TEC 92, edited by A. Niku-Lari, (IITT International, Gournay/Marne, France, 1992) p. 211.Google Scholar
  4. 4.
    F. Fouquet, J.M. Pelletier, M. Pilloz and A.B. Vannes, in “Laser de puissance et traitements des matériaux”, edited by A.B. Vannes (Presses Polytechniques et Universitaires, Lausanne, Switzerland, 1991) p. 217.Google Scholar
  5. 5.
    M.C. Sahour, A.B. Vannes and J.M. Pelletier, J. Phys. IV, C7 1 (1991) 51.Google Scholar
  6. 6.
    C.L. Seyton, W.M. Steen, K.G. Watkins, M.G.S. Ferreira, R.G.M. Vilar and P. Carvalho, in MAT-TEC 92, edited by A. Niku-Lari (IITT International, Gournay/Marne, France, 1992) p. 219.Google Scholar
  7. 7.
    W.A. Glaeser, “Materials for tribology” (Elsevier, Amsterdam, 1992).Google Scholar
  8. 8.
    J.C. Bavay in “Les aciers inoxydables”, edited by P. Lacombe, B. Baroux and G. Beranger (Les Editions de Physique, Les Ulis, France, 1990) p. 567.Google Scholar
  9. 9.
    J.D. Ayers and T.R. Tucker, Thin Solid Films 73 (1980) 201.CrossRefGoogle Scholar
  10. 10.
    T.H. Kim and B.C. Kim, J. Mater. Sci. 27 (1992) 2967.CrossRefGoogle Scholar
  11. 11.
    A. B. Lysenko, N.N. Kozina, T.V. Gulyaeva, V.V. Shibaev, A.G. Glushkov, Metallovedenie i Termicheskaya Obrabotka Metallov 3 (1991) 2.Google Scholar
  12. 12.
    C. Marsden, D.R.F. West and W.M. Steen, in “Laser surface treatment of metals ”, edited by C.W. Draper and P. Mazzoldi, NATO ASI Series E, no 115, (Martinus Nijhoff Publishers, Boston, 1986) p. 461.CrossRefGoogle Scholar
  13. 13.
    C. Rieker, D.G. Morris and J. Steffen, Mat. Sci. Technol. 5 (1989) 590.CrossRefGoogle Scholar
  14. 14.
    M. Tomie, N. Abe, S. Noguchi, Y. Kitahara and Y. Sato, Trans. JWRI 20 (1991) 43.Google Scholar
  15. 15.
    C. TASSIN, M. PONS, A. Y. FASASI, A. GALERIE, G. SAINFORT and C. POLAK, J. Mater. Sci. in press.Google Scholar
  16. 16.
    T.H. Kim and B.G. Seong, ibid. 25 (1990) 3583.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • F. Laroudie
    • 1
    • 2
  • C. Tassin
    • 1
    • 2
  • M. Pons
    • 1
    • 2
  1. 1.Laboratoire Science des Surfaces et Matériaux CarbonésSaint-Martin d'HèresFrance
  2. 2.ENS d'Electrochimie et d'Electrométallurgie de GrenobleInstitut National Polytechnique de GrenobleSaint-Martin d'HèresFrance

Personalised recommendations