Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3639–3644 | Cite as

Metallic alloys suitable for YBCO melt-texturing at low temperature

  • P. Lambert
  • B. Arsenault
Papers

Abstract

Ag-Au-Pd alloys, having a gradient in the concentration of the elements (called diffusion alloys), were investigated in order to find homogeneous alloys suitable for melt-processing of YBCO superconductor. Interface aspects between the superconductor and diffusion alloys and composition profiles of the diffusion alloys after melt texturing are presented. The results obtained with the diffusion alloy led to the development of new ternary homogeneous Ag-Au-Pd alloys of composition (at %) Ag-(18–23)Au-(2–10)Pd. The interface between homogeneous alloys and the YBCO superconductor after melt-processing was characterized and the resistivity-temperature curve obtained with electrical contacts on the metallic part of the composite is shown.

Keywords

Polymer Material Processing Electrical Contact Metallic Alloy Composition Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Verkouteren, Mater. Lett. 8 (1989) 59.CrossRefGoogle Scholar
  2. 2.
    J. L. Porter, T. K. Vethanayagam, R. L. Snyder and J. A. T. Taylor, J. Am. Ceram. Soc. 73 (1990) 1760.CrossRefGoogle Scholar
  3. 3.
    D. Dubé, P. Lambert and B. Champagne, J. Mater. Sci. 27 (1992) 5339.CrossRefGoogle Scholar
  4. 4.
    D. L. Kaiser, F. Holtzberg, B. A. Scott and T. R. McGuire, Appl. Phys. Lett. 51 (1987) 1040.CrossRefGoogle Scholar
  5. 5.
    G. W. Kammlot, T. H. Tiefel, and S. Jin, ibid. 56 (1990) 2459.CrossRefGoogle Scholar
  6. 6.
    C. Gélinas, P. Lambert, D. Dubé, B. Arsenault, Supercond. Sci. Technol. 6 (1993) 368.CrossRefGoogle Scholar
  7. 7.
    Z. Lian, Z. Pingxiang, Ji Ping, et al., ibid. 3 (1990) 490.CrossRefGoogle Scholar
  8. 8.
    Ji Chunlin, F. Zhanguo, Z. Guofan, et al., ibid. 4 (1990) 49.CrossRefGoogle Scholar
  9. 9.
    P. McGinn, N. Zhu, W. Chen, et al., Physica C 167 (1990) 343.CrossRefGoogle Scholar
  10. 10.
    P. McGinn, W. Chen and M. A. Black, ibid. 161 (1989) 198.CrossRefGoogle Scholar
  11. 11.
    V. Selvamanickam, C. Partsinevelos, A. V. McGuire and K. Salama, Appl. Phys. Lett. 60 (1992) 3313.CrossRefGoogle Scholar
  12. 12.
    S. Jin, T. H. Tiefel, R. C. Sherwood, et al., Phys. Rev. B 37 (1988) 7850.CrossRefGoogle Scholar
  13. 13.
    M. Murakami, M. Morita, K. Doi and K. Miyamoto, Jpn J. Appl. Phys. 28 (1989) 1189.CrossRefGoogle Scholar
  14. 14.
    M. Murakami, Mod. Phys. Lett. B 4(3) (1990) 163.CrossRefGoogle Scholar
  15. 15.
    K. Yamaguchi, M. Murakami, H. Fujimoto, S. Gotoh, T. Oyama, Y. Shiohara, N. Koshizuka and S. Tanaka, J. Mater. Res. 6 (1991) 1404.CrossRefGoogle Scholar
  16. 16.
    M. Murakami, S. Gotoh, H. Fujimoto, K. Yamaguchi, N. Koshizuka and S. Tanaka, Supercond. Sci. Technol. 4 (1991) S43.CrossRefGoogle Scholar
  17. 17.
    B. Ni, M. Kobayashi, K. Funaki, K. Yamafuji and T. Matsushita, Jpn J. Appl. Phys. 30 (1991) L1861.CrossRefGoogle Scholar
  18. 18.
    S. Jin and J. E. Graebner, Mater. Sci. Eng. B7 (1990) 243.Google Scholar
  19. 19.
    N. Mcn. Alford, W. J. Clegg, M. A. Harmer, J. D. Birchal, K. Kendal and D. H. Jones, Nature 332 (1988) 58.CrossRefGoogle Scholar
  20. 20.
    S. Jin, T. H. Tiefel, R. A. Fastnacht and G. W. Kammlott, Appl. Phys. Lett. 60 (1992) 3307.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. Lambert
    • 1
  • B. Arsenault
    • 1
  1. 1.Industrial Materials InstituteNational Research Council of CanadaBouchervilleCanada

Personalised recommendations