Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3625–3632 | Cite as

Yield stress behaviour of metal injection moulding suspensions at elevated temperatures

  • M. L. Foong
  • K. C. Tam
  • N. H. Loh
Papers

Abstract

Yield behaviour of metal injection moulding (MIM) feedstocks was studied using a cone and plate controlled stress rheometer. Four feedstocks consisting of 58 vol % carbonyl iron (with 2 wt % nickel) in different ethylene vinyl acetate (EVA):beeswax ratio binder systems were studied at six temperatures ranging from 130 to 180‡C. The yield stress was found by extrapolating to zero shear rate of the measured data obtained using a controlled stress rheometer over low shear rate regime. The yield stress, ρy, was found to increase with decreasing temperature. An Arrhenius equation was used to relate the dependence of yield stress on temperature and the corresponding activation energy for yield, Ey, can be determined. For a given temperature, feedstocks with higher EVA content exhibited higher Τy and Ey. Moreover, the effect of temperature on yield stress was found to be greater for feedstocks with higher EVA content.

Keywords

Activation Energy Carbonyl Shear Rate Arrhenius Equation Vinyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. PETT, V. D. N. RAO and S. B. A. QADERI, US Patent 4 158 689 (1979).Google Scholar
  2. 2.
    R. D. RIVERS, US Patent 4 113 480 (1978).Google Scholar
  3. 3.
    R. E. WIECH Jr, US Patent 4 197 118 (1980).Google Scholar
  4. 4.
    Idem, US Patent 4 415 528 (1983).Google Scholar
  5. 5.
    K. P. JOHNSON, US Patent 4 765 950 (1988).Google Scholar
  6. 6.
    R. L. BILLIET, US Patent 4 795 598 (1989).Google Scholar
  7. 7.
    Y. KIYOTA, US Patent 4 867 943 (1989).Google Scholar
  8. 8.
    T. NAGAI, H. YAMANASHI and H. HACHIMORI, US Patent 4 898 902 (1990).Google Scholar
  9. 9.
    M. NAKANISHI and T. MIHO, US Patent 4 968 739 (1990).Google Scholar
  10. 10.
    C. A. SUNDBACK, B. E. NOVICH, A. E. KARAS and R. W. ADAMS, US Patent 5 047 182 (1991).Google Scholar
  11. 11.
    R. M. German, “Powder Injection Molding” (Metal Powders Industries Federation, NJ, 1990) p. 176.Google Scholar
  12. 12.
    M. J. Edirisinghe and J. R. G. Evans, J. Mater. Sci. 22 (1987) 269.CrossRefGoogle Scholar
  13. 13.
    R. M. German, “Powder Injection Molding” (Metal Powders Industries Federation, NJ, 1990) p. 160.Google Scholar
  14. 14.
    Idem, ibid. p. 158, 173, 231.Google Scholar
  15. 15.
    B.O. RHEE, PhD thesis, Renssalaer Polytechnic Institute (1992).Google Scholar
  16. 16.
    E. Windhab, “Proceedings of the Tenth International Congress on Rheology, Sydney”, edited by P. H. T. Uhlherr (Society of Rheology, Sydney, 1988) p. 372.Google Scholar
  17. 17.
    Q. D. Nguyen and D. V. Boger, Ann. Rev. Fluid Mech. 24 (1992) 47.CrossRefGoogle Scholar
  18. 18.
    J. P. Harnett and R. Y. Z. Hu, J. Rheol. 33(4) (1989) 671.CrossRefGoogle Scholar
  19. 19.
    D. D. Kee and C. F. Chan Man Fong, J. Rheol. 37(4) (1993) 775.CrossRefGoogle Scholar
  20. 20.
    D. D. Kee and C. J. Durning, in “Polymer Rheology and Processing”, edited by A. A. Collyer and L. A. Utracki (Elsevier Science Publishers, England, 1990) p. 177.Google Scholar
  21. 21.
    Q. D. Nguyen and D. V. Boger, J. Rheol. 29(3) (1985) 335.CrossRefGoogle Scholar
  22. 22.
    Idem, ibid. 27(4) (1983) 321.CrossRefGoogle Scholar
  23. 23.
    D. M. Kalyon, P. Yaras, B. Aral and U. Yilmazer, ibid. 37(1) (1993) 35.CrossRefGoogle Scholar
  24. 24.
    L. Bohlin, in “Proceedings of the Tenth International Congress on Rheology, Sydney”, edited by P. H. T. Uhlherr (Society of Rheology, Sydney, 1988) p. 191.Google Scholar
  25. 25.
    P. J. Hansen and M. C. Williams, Polym. Eng. Sci. 27(8) (1987) 586.CrossRefGoogle Scholar
  26. 26.
    A. Magnin and J. M. Piau, J. Non-Newtonian Fluid Mech. 36 (1990) 85.CrossRefGoogle Scholar
  27. 27.
    Idem, ibid. 23 (1987) 91.CrossRefGoogle Scholar
  28. 28.
    A. S. Yoshimura, R. K. Prud'homme and H. M. Princen, J. Rheol. 31(8) (1987) 699.CrossRefGoogle Scholar
  29. 29.
    E. C. Bingham, “Fluidity and Plasticity” (McGraw-Hill, New York, 1922).Google Scholar
  30. 30.
    W. H. Herschel and R. Bulkley, Proc. ASTM 26 (1926) 621.Google Scholar
  31. 31.
    W. Casson, in “Rheology of Dispersed Systems”, edited by C. C. Mill (Pergamon, London, 1959) p. 84.Google Scholar
  32. 32.
    M. Henderson, IEEE Electrical Insulation Mag. 9(1) (1993) 30.CrossRefGoogle Scholar
  33. 33.
    B. O. Rhee and C. I. Chung, “Proceedings of the Fourth APP Annual Meeting” (Metal Powders Industries Fed., NJ, 1990).Google Scholar
  34. 34.
    C. I. Chung, M. Y. Cao and B. O. Rhee, ibid.“.Google Scholar
  35. 35.
    “Instruction Manual for the Carri-Med CSL Controlled Stress Rheometer”, edited by CarriMed Ltd, UK.Google Scholar
  36. 36.
    D. M. Husband, N. Aksel and W. Gieissle, J. Rheol. 37(2) (1993) 215.CrossRefGoogle Scholar
  37. 37.
    N. Ohl and W. Gleissle, ibid. 37(2) (1993) 381.CrossRefGoogle Scholar
  38. 38.
    A. Y. Malkin, Adv. Polym. Sci. 96 (1990) 70.Google Scholar
  39. 39.
    H. Tanaka and J. L. White, J. Non-Newtonian Fluid Mech. 7 (1980) 333.CrossRefGoogle Scholar
  40. 40.
    Idem, Polym. Eng. Sci. 20(14) (1980) 949.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. L. Foong
    • 1
  • K. C. Tam
    • 1
  • N. H. Loh
    • 1
  1. 1.School of Mechanical and Production EngineeringNanyang Technological UniversitySingapore

Personalised recommendations