Journal of Materials Science

, Volume 30, Issue 14, pp 3612–3618 | Cite as

Transport property and battery discharge characteristic studies on 1−x(0.75Agl∶0.25AgCl)∶ xAl2O3 composite electrolyte system

  • R. C. Agrawal
  • R. K. Gupta


Various experimental studies on a new fast Ag+ ion-conducting composite electrolyte system: (1−x) (0.75Agl∶0.25AgCl)∶xAl2O3 are reported. Undried Al2O3 particles of size <10 Μm were used. The conventional matrix material Agl has been replaced by a new mixed 0.75Agl∶0.25AgCl quenched and/or annealed host compound. Conductivity enhancements ∼10 from the annealed host and ∼3 times from the quenched host obtained for the composition 0.7(0.75Agl∶0.25AgCl)∶0.3Al2O3, can be explained on the basis of the space charge interface mechanism. Direct measurements of ionic mobility Μ as σ function of temperature together with the conductivity σ were carried out for the best composition. Subsequently, the mobile ion concentration n values were calculated from Μ and a data. The value of heat of ion transport q* obtained from the plot of thermoelectric power θ versus 1/T supports Rice and Roth's free ion theory for superionic conductors. Using the best composition as an electrolyte various solid state batteries were fabricated and studied at room temperature with different cathode preparations and load conditions.


Al2O3 Ionic Mobility AgCl Thermoelectric Power Al2O3 Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Maier, in “Solid state ionics: materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 111.Google Scholar
  2. 2.
    A. K. Shukla and V. Sharma, ibid.“ p. 91.Google Scholar
  3. 3.
    J. Maier, in “Superionic solids and solid electrolytes — recent trends”, edited by A. L. Laskar and S. Chandra (Academic Press, New York, 1989) p. 137.CrossRefGoogle Scholar
  4. 4.
    J. B. Wagner, in “High conductivity solid ionic conductors — recent trends and applications”, edited by T. Takahashi (World Scientific, Singapore, 1989) p. 146.Google Scholar
  5. 5.
    N. J. Dudney, Ann. Rev. Mater. Sci. 19 (1989) 103.CrossRefGoogle Scholar
  6. 6.
    F. W. Poulsen, in “Transport-structure relations in fast ion and mixed conductors” edited by F. W. Poulsen, N. H. Andersen, K. Clausen, S. Skaarup and O. T. Sorensen (Riso Nat. Lab., Roskilde, Denmark, 1985) p. 67.Google Scholar
  7. 7.
    T. Jow and J. B. Wagner, Jr, J. Electrochem. Soc. 126 (1979) 1963.CrossRefGoogle Scholar
  8. 8.
    K. Shahi and J. B. Wagner, Jr, ibid. 128 (1981) 6.CrossRefGoogle Scholar
  9. 9.
    C. C. Liang, A. V. Joshi and N. E. Hamilton, J. Appl. Electrochem. 8 (1978) 445.CrossRefGoogle Scholar
  10. 10.
    W. Jander, Angew. Chem. 42 (1929) 462.CrossRefGoogle Scholar
  11. 11.
    C. C. Liang, J. Electrochem. Soc. 120 (1973) 1289.CrossRefGoogle Scholar
  12. 12.
    M. F. Bell, M. Sayer, D. S. Smith and P. S. Nicholson, Solid State Ionics 9/10 (1983) 731.CrossRefGoogle Scholar
  13. 13.
    A. Bunde, W. Dieterich and E. Roman, Phys. Rev. Lett. 55 (1985) 5.CrossRefGoogle Scholar
  14. 14.
    R. Blender and W. Dieterich, J. Phys. C. 20 (1987) 6113.CrossRefGoogle Scholar
  15. 15.
    N. F. Uvarov, V. P. Isupov, V. Sharma and A. K. Shukla, Solid State Ionics 51 (1992) 41.CrossRefGoogle Scholar
  16. 16.
    U. Lauer and J. Maier, Ber. Bunsenges. Phys. Chem. 96 (1992) 111.CrossRefGoogle Scholar
  17. 17.
    R. C. Agrawal, R. K. Gupta, R. Kumar and A. Kumar, J. Mater. Sci. 29 (1994) 3673.CrossRefGoogle Scholar
  18. 18.
    M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi and Z. Ontaki, J. Appl. Phys. 57 (1985) 123.CrossRefGoogle Scholar
  19. 19.
    S. Chandra, S. K. Tolpadi and S. A. Hashmi, Solid State Ionics 28/30 (1988) 651.CrossRefGoogle Scholar
  20. 20.
    R. C. Agrawal, K. Kathal, R. Chandola and R. K. Gupta, in “Solid state ionics: materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 363.Google Scholar
  21. 21.
    R. C. Agrawal, K. Kathal and R. K. Gupta, Solid. State Ionics 74 (1994) 137.CrossRefGoogle Scholar
  22. 22.
    R. C. Agrawal and R. Kumar, J. Phys. D. 27 (1994) 2431.CrossRefGoogle Scholar
  23. 23.
    K. M. Shaju and S. Chandra, Phys. Stat. Sol. (b) 181 (1994) 301.CrossRefGoogle Scholar
  24. 24.
    K. Shahi, Phys. Stat. Sol. (a) 41 (1977) 11.CrossRefGoogle Scholar
  25. 25.
    S. M. Girvin, J. Sol. Stat. Chem. 25 (1978) 65.CrossRefGoogle Scholar
  26. 26.
    M. J. Rice and W. L. Roth, ibid. 4 (1972) 294.CrossRefGoogle Scholar
  27. 27.
    S. Chandra and R. C. Agrawal, “Solid state battery — prospects and limitations” (National Academy of Sciences, India: Golden Jubilee Commemoration Volume, 1980) p. 1.Google Scholar
  28. 28.
    P. HAGENMULLER and W. van GOOL (editors), “Solid electrolytes”, Material Science Series (Academic Press, 1978).Google Scholar
  29. 29.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104 (1957) 308 & 379.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. C. Agrawal
    • 1
  • R. K. Gupta
    • 1
  1. 1.Solid State Ionics Research Laboratory, School of Studies in PhysicsPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations