Journal of Materials Science

, Volume 30, Issue 14, pp 3607–3611 | Cite as

The study of microstructure of Bi, Pb-Sr-Ca-Cu-O superconductors prepared by multiple intermediate processing

  • N. Hudáková
  • V. Plecháček
  • K. KníŽek


The influence of a multistep intermediate pressing and sintering process on microstructure and the relation between microstructure and values of critical current density, Jc, in Bi, Pb-Sr-Ca-Cu-O high-Tc polycrystalline superconductors was studied. The Jc values increased with increasing number of pressing and sintering steps, n, only up to a certain value of n. The increase of Jc was reached by improvement of connections between grains due to compacting and by the alignment of superconducting grains in the c-axis direction. The maximal value of Jc was found for n = 5. The crack development is responsible for decreasing Jc for a higher number of steps.


Polymer Microstructure Material Processing Critical Current Density Crack Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Jpn J. Appl. Phys. 27 (1988) L209.CrossRefGoogle Scholar
  2. 2.
    J. Miskuf, K. Csach, P. Diko, V. Kavecansky, M. Reiffers and I. Batko, Acta. Phys. Slov. 40 (1990) 245.Google Scholar
  3. 3.
    N. Hudakova and P. Diko, Phys. C 167 (1990) 408.CrossRefGoogle Scholar
  4. 4.
    W. Gao and J. B. Vander sande, ibid. 181 (1991) 105.CrossRefGoogle Scholar
  5. 5.
    J. Kase, K. Togano, H. Kumakura, D. R. Dietderich, N. Irisawa, T. Morimoto and H. Maeda, Jpn J. Appl. Phys. 29 (1990) L1096.CrossRefGoogle Scholar
  6. 6.
    S. Jin, R. B. Van Dover, T. H. Tiefel, J. E. Graebner and N. D. Spencer, Appl. Phys. Lett. 58 (1991) 868.CrossRefGoogle Scholar
  7. 7.
    K. Sato, N. Shibuta, H. Mukai, T. Hikata, M. Ueyama and T. Kato, Phys. C 190 (1991) 50.CrossRefGoogle Scholar
  8. 8.
    H. Sekine, K. Ogawa, K. Inoue, H. Maeda and K. Numata, Jpn J. Appl. Phys. 28 (1989) L1185.CrossRefGoogle Scholar
  9. 9.
    B. M. Moon, B. Lalevic, B. H. Kear, L. E. Mccandlish, A. Safari and M. Meskoob, Appl. Phys. Lett. 55 (1989) 1466.CrossRefGoogle Scholar
  10. 10.
    H. Seing, K. Ishizaki and M. Tanaka, Jpn J. Appl. Phys. 28 (1989) L78.CrossRefGoogle Scholar
  11. 11.
    B. M. Moon, G. Kordas, D. J. Van Harlingen, Y. L. Jeng, D. L. Johnson, P. R. Sharpe and K. Goretta, Mater. Lett. 10 (1991) 481.CrossRefGoogle Scholar
  12. 12.
    V. Plechacek, Cryogenics 32 (1992) 1010.CrossRefGoogle Scholar
  13. 13.
    V. Plechacek, H. Hejdova and Z. Trejbalova, ibid. 30 (1990) 11.CrossRefGoogle Scholar
  14. 14.
    G. K. Baranova and L. A. Dorosinskii, Phys. C 181 (1991) 105.CrossRefGoogle Scholar
  15. 15.
    N. Nikolo, Supercond. Sci. Technol. 6 (1993) 618.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • N. Hudáková
    • 1
  • V. Plecháček
    • 2
  • K. KníŽek
    • 2
  1. 1.Institute of Experimental PhysicsSlovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of PhysicsAcademy of Sciences of Czech RepublicPraha 6Czech Republic

Personalised recommendations