Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3603–3606 | Cite as

Surface, structural and electrical properties of BaTiO3 films grown on p-Si substrates by low pressure metal organic chemical vapour deposition

  • Y. S. Yoon
  • S. S. Yom
  • T. W. Kim
  • H. J. Kim
  • M. Jung
  • J. Y. Leem
  • T. W. Kang
  • S. J. Lee
Papers

Abstract

Metal organic chemical vapour deposition of BaTiO3 using Ba(tmhd)2, Ti(OC3H7)4 and N2O, where tmhd equals 2,2,6,6-tetramethyl-3,5-heptanedionate, via pyrolysis at relatively low temperatures (∼370‡C) was performed in order to produce BaTiO3 insulator gates. Scanning electron microscopy showed that the surfaces of the BaTiO3 films had very smooth morphologies. Atomic force microscopy showed that the BaTiO3 thin film was polycrystalline. X-ray diffraction results indicated that BaTiO3 crystalline films grew on Si(100) with [110] orientation. High resolution transmission electron microscopy measurements showed that the BaTiO3 films were polycrystalline, and an interfacial layer in the BaTiO3/Si interface was formed. The stoichiometry and atomic structure of the BaTiO3 films were investigated by Auger electron spectroscopy and transmission measurements, respectively. Room temperature capacitance-voltage measurements clearly revealed metal-insulator-semiconductor behaviour for samples with BaTiO3 insulator gates, and interface state densities at the BaTiO3/p-Si interface were approximately high, 1011 eV−1 cm−2, at the middle of the Si energy gap.

Keywords

Pyrolysis Atomic Force Microscopy Auger High Resolution Transmission Electron Microscopy BaTiO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Philips and W. M. Augustyniak, Appl. Phys. Lett. 48 (1986) 468.CrossRefGoogle Scholar
  2. 2.
    M. Ishida, I. Katakabe and T. Nakamura, ibid. 52 (1988) 1326.CrossRefGoogle Scholar
  3. 3.
    K. Sawada, M. Ishida and T. Nakamura, ibid. 52 (1988) 1673.CrossRefGoogle Scholar
  4. 4.
    R. Nawathey, R. D. Vispute, S. M. Chaudhari, S. M. Kanetkar and S. B. Ogale, Solid State Commun. 71 (1989) 9.CrossRefGoogle Scholar
  5. 5.
    P. Li, T. M. Lu and H. Bakhu, Appl. Phys. Lett. 58 (1991) 2639.CrossRefGoogle Scholar
  6. 6.
    S. Miura, T. Yoshitake, S. Matsubara, Y. Miyasaki, N. Shohata and T. Satoh, ibid. 56 (1990) 2237.CrossRefGoogle Scholar
  7. 7.
    Y. S. Yoon, D. H. Lee, S. S. Choi and S. S. Yom, Korean Appl. Phys. 5 (1992) 197.Google Scholar
  8. 8.
    G. H. Haertling, J. Vac. Sci. Technol. A 9 (1991) 414.CrossRefGoogle Scholar
  9. 9.
    C. S. Chern, J. Zhao, L. Luo, P. Lu, Y. Q. Li, P. Norris, B. Kear, F. Cosandey, C. J. Maggiore, B. Gallois and B. J. Wilkens, Appl. Phys. Lett. 60 (1992) 1144.CrossRefGoogle Scholar
  10. 10.
    R. A. Mckee, F. J. Walker, J. R. Conner, E. D. Specht and D. E. Zelmon, ibid. 59 (1991) 782.CrossRefGoogle Scholar
  11. 11.
    G. M. Davis and M. C. Gower, ibid. 55 (1989) 112.CrossRefGoogle Scholar
  12. 12.
    L. A. Wills, B. W. Wessels, D. S. Richeson and T. J. Marks, ibid. 60 (1992) 41.CrossRefGoogle Scholar
  13. 13.
    T. W. Kim, M. Jung, Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom and J. Y. Lee, Solid State Commun. 86 (1993) 565.CrossRefGoogle Scholar
  14. 14.
    Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi and S-S. Back, J. Appl. Phys. 73 (1993) 1547.CrossRefGoogle Scholar
  15. 15.
    K. Iijima, T. Terashima, K. Yamamoto, K. Hirate and Y. Bando, Appl. Phys. Lett. 56 (1990) 527.CrossRefGoogle Scholar
  16. 16.
    B. S. Kwak, K. Zhang, E. P. Boyd, A. Erbil and B. J. Wilkens, J. Appl. Phys. 69 (1991) 767.CrossRefGoogle Scholar
  17. 17.
    P. C. Joshi, A. Mansingh, W. N. Kamalasanan and S. Chandra, Appl. Phys. Lett. 59 (1991) 2389.CrossRefGoogle Scholar
  18. 18.
    L. T. Hudson, R. L. Kurtz, S. W. Robey, D. Temple and R. L. Stockbauer, Phys. Rev. B 47 (1993) 1174.CrossRefGoogle Scholar
  19. 19.
    S. M. Sze, “Physics of Semiconductor Devices”, 2nd Edn (Wiley, New York, 1981).Google Scholar
  20. 20.
    G. Q. Lo, D. L. Kwang and S. Lee, Appl. Phys. Lett. 60 (1992) 3286.CrossRefGoogle Scholar
  21. 21.
    L. M. Terman, Solid State Electron. 5 (1962) 285.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Y. S. Yoon
    • 1
  • S. S. Yom
    • 1
  • T. W. Kim
    • 2
  • H. J. Kim
    • 2
  • M. Jung
    • 2
  • J. Y. Leem
    • 3
  • T. W. Kang
    • 4
  • S. J. Lee
    • 5
  1. 1.Applied Physics LaboratoryKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of PhysicsKwangwoon UniversitySeoulKorea
  3. 3.Pressure and Vacuum LaboratoryKorea Standards Research InstituteChungnamKorea
  4. 4.Department of PhysicsDonguk UniversitySeoulKorea
  5. 5.Department of Ceramic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations