Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3591–3597 | Cite as

Microstructural evolution of FINEMET type alloys with chromium: An electron microscopy study

  • M. Millán
  • C. F. Conde
  • A. Conde
Papers

Abstract

Microstructural changes in Fe73.5−xCrxCu1Nb3Si13.5B9 (0⩽x⩽5) alloys with thermal treatment were studied by electron microscopy. In a first stage, around 800 K, an Fe(Si) nanocrystalline phase is formed in the amorphous residual matrix. Crystallization onset is enhanced with the Cr content of the alloy. In a second stage, around 950 K, full crystallization of the samples leads to the formation of a body centred cubic (b.c.c.) boride-type unknown crystal phase with a lattice parameter of a=1.52 nm, and recrystallization of the previous Fe(Si) nanophase also occurs. No qualitative differences were found between dynamic and isothermal crystallization. The size effect for thin samples is limited to a lowering of crystallization temperatures. For isothermal nanocrystallization in the temperature range 775–900 K, the mean grain size of the nanocrystals increases for short annealing times to stabilize at a constant value of about 10–15 nm for long annealing times. The stabilized grain size increases with increasing annealing temperature and slightly decreases with the Cr content of the alloy.

Keywords

Crystallization Recrystallization Annealing Time Microstructural Evolution Crystallization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yoshizawa, S. Oguma and K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.CrossRefGoogle Scholar
  2. 2.
    Y. Yoshizawa, K. Yamauchi, T. Yamana and H. Sugihawa, ibid. 64 (1988) 6047.CrossRefGoogle Scholar
  3. 3.
    K. Lu, J. T. Wang and W. D. Wei, ibid. 69 (1991) 522.CrossRefGoogle Scholar
  4. 4.
    R. Luck, K. Lu and W. Frantz, Scripta Metall. et Mater. 28 (1993) 1071.CrossRefGoogle Scholar
  5. 5.
    U. Köster, U. Schünemann, M. Blank-Bewers-Dorff, K. Brauer, M. Sutton and G. B. Stephenson, Mater. Sci. Engng A133 (1991) 611.CrossRefGoogle Scholar
  6. 6.
    G. Herzer, IEEE Trans. Magn. 25 (1989) 3327.CrossRefGoogle Scholar
  7. 7.
    Idem, Mater. Sci. Engng A133 (1991) 1.CrossRefGoogle Scholar
  8. 8.
    M. Müller, N. Mattern and L. Illgen, Z. Metallkde 82 (1991) 895.Google Scholar
  9. 9.
    K. Hiraga and O. Kohmoto, Mater. Trans. 33 (1991) 868.CrossRefGoogle Scholar
  10. 10.
    P. Duhaj, P. Svec, D. Janickovic, I. Matko and M. Hlasnik, Mater. Sci. Engng B14 (1992) 357.CrossRefGoogle Scholar
  11. 11.
    K. Hono, K. Hiraga, Q. Wang, A. Inoue and T. Sakurai, Acta Metall. et Mater. 40 (1992) 263.Google Scholar
  12. 12.
    G. Herzer and H. Warlimont, NanoStruct. Mater. 1 (1992) 263.CrossRefGoogle Scholar
  13. 13.
    G. Hampel, A. Pundt and J. Hesse, J. Phys.: Condens. Matter 4 (1992) 395.Google Scholar
  14. 14.
    G. RIxecker, P. Schaaf and U. Gonser, ibid. 4 (1992) 10295.Google Scholar
  15. 15.
    M. Knobel, D. R. Santos, I. L. Torriani and R. S. Turtelli, NanoStruct. Mater. 2 (1993) 399.CrossRefGoogle Scholar
  16. 16.
    X. D. Liu and J. T. Wang, ibid. 2 (1993) 63.CrossRefGoogle Scholar
  17. 17.
    C. F. Conde, M. Millán and A. Conde, J. Magn. Magn. Mater. 138 (1994) 314.CrossRefGoogle Scholar
  18. 18.
    J. Jiang, F. Aubertin, U. Gonser and H. R. Hilzinger, Z. Metallkde 82 (1991) 698.Google Scholar
  19. 19.
    T. Sawa and Y. Takamashi, J. Appl. Phys. 67 (1990) 5565.CrossRefGoogle Scholar
  20. 20.
    T. Zemcik, Y. Jirásková, K. Zaveta, D. Eckert, J. Schneider, N. Mattern and D. Hesske, Mater. Lett. 10 (1991) 313.CrossRefGoogle Scholar
  21. 21.
    W. B. Pearson, “A Handbook of the Lattice Spacing and Structures of Metals and Alloys” (Pergamon Press, London, 1958).CrossRefGoogle Scholar
  22. 22.
    G. Herzer, J. Magn. Magn. Mater. 112 (1992) 258.CrossRefGoogle Scholar
  23. 23.
    P. Duhaj, P. Svec, D. Janickovic and I. Matko, Mater. Sci. Engng A133 (1991) 398.CrossRefGoogle Scholar
  24. 24.
    T. H. Noh, M. B. Lee, H. J. Kim and I. K. Kang, J. Appl. Phys. 67 (1990) 5568.CrossRefGoogle Scholar
  25. 25.
    O. Kohmoto, K. Haneda and T. Cloh, Jpn. J. Appl. Phys. 29 (1990) L1460.CrossRefGoogle Scholar
  26. 26.
    M. Fujinami, Y. Hashiguchi and T. Yamamoto, ibid. 29 (1990) L477.CrossRefGoogle Scholar
  27. 27.
    J. Jiang, F. Aubertin, U. Gonser and H. R. Hilzinger, Z. Metallkde 82 (1991) 698.Google Scholar
  28. 28.
    M. Knobel, D. R. Santos, I. L. Torriani and R. S. Turtelli, NanoStruct. Mater. 2 (1993) 399.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Millán
    • 1
  • C. F. Conde
    • 1
  • A. Conde
    • 1
  1. 1.Departamento de Física de la Materia CondensadaInstituto de Ciencia de Materiales, CSIC-Universidad de SevillaSevillaSpain

Personalised recommendations