Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3587–3590 | Cite as

Mechanical stability of rigid rod polymer fibres under the influence of compression and temperature

  • D. M. Rein
  • Y. Cohen
Papers

Abstract

This work presents a mathematical model for the compressive strength of a rigid rod polymer fibre based on an approach describing the fibre fibril as an end-loaded column on an elastic base. Also, it is suggested that the model of elastic stability of the coated fibre includes the influence of thermal stresses. A good agreement with experimental data is received. From this model one can propose that if an interfibrilar matrix material is incorporated in the fibre, at a small volume fraction of about a few per cent, this material may have a pronounced influence on the fibre's compressive strength.

Keywords

Polymer Experimental Data Mathematical Model Compressive Strength Fibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. Yang, “Kevlar aramid fiber” (Wiley, New York, 1993) p. 88.Google Scholar
  2. 2.
    S. Kumar, W. W. Adams and T. E. Helminiak, J. Reinforced Plastic Compos. 7 (1988) 108.CrossRefGoogle Scholar
  3. 3.
    F. J. McGarry and J. E. Moalli, Polymer 32 (1991) 1816.CrossRefGoogle Scholar
  4. 4.
    S. Bhattacharya, Proceedings ACS Div. Poly. Mater. Sci. & Engng 60 (1989) 512.Google Scholar
  5. 5.
    F. J. McGarry and J. E. Moalli, SAMPLE Quaterly July (1992) 35.Google Scholar
  6. 6.
    R. F. Kovar and R. R. Haghighat, Mater. Res. Soc. Symp. Proc. 121 (1988) 389.CrossRefGoogle Scholar
  7. 7.
    H. Schuerch, AIAA J. 4 (1966) 102.CrossRefGoogle Scholar
  8. 8.
    L. B. Greszczuk, ibid. 13 (1975) 1311.CrossRefGoogle Scholar
  9. 9.
    S. J. DeTeresa, S. R. Allen, R. J. Farris and R. S. Porter, J. Mater. Sci. 19 (1984) 57.CrossRefGoogle Scholar
  10. 10.
    S. P. Timoshenko and J. M. Gere, “Theory of elastic stability” (McGraw-Hill, New York, 1961) pp. 457–468.Google Scholar
  11. 11.
    E. Sideridis, J. Appl. Polym. Sci. 48 (1993) 243.CrossRefGoogle Scholar
  12. 12.
    S. L. Phoenix and J. Scelton, Texas. Res. J. 44 (1974) 934.CrossRefGoogle Scholar
  13. 13.
    D. W. Hadley and P. R. Pinnock, J. Mater. Sci. 4 (1969) 152.CrossRefGoogle Scholar
  14. 14.
    C. Lietzau and R. J. Farris, Mater. Res. Soc. Symp. Proc. 305 (1993) 141.CrossRefGoogle Scholar
  15. 15.
    R. J. FARRIS, Y. COHEN and S. J. DeTERESA, US Patent 4842924.Google Scholar
  16. 16.
    L. E. VAYKHANSKY and Y. COHEN, J. Polym. Sci., Polym. Phys. E, in the press.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. M. Rein
    • 1
  • Y. Cohen
    • 1
  1. 1.Department of Chemical EngineeringTechnion-lsrael Institute of TechnologyHaifaIsrael

Personalised recommendations