Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3576–3586 | Cite as

Strain-rate and grain-size effect on substructures and mechanical properties in OFHC copper during tension

  • H. Shankaranarayan
  • S. K. Varma
Papers

Abstract

The combined effect of grain size (recrystallized grains of 34, 86, 105 and 128 Μm) and strain rate (0.01, 0.05, 0.25, 2.5 and 5 min−1) on the evolution of dislocation substructures and mechanical properties in oxygen-free high conductivity (OFHC) copper during room-temperature tensile testing has been studied. Under identical conditions of deformation, the flow stress values for smaller grain size were higher than those for larger grain sizes with the exception in the case of 86 Μm which has been attributed to the inhomogeneous substructural developments in the microstructures. The cell size decreases monotonically with increase in per cent strain indicating no signs of cell size saturation. The effect of strain rate on the development of dislocation substructures at constant strain is such that the cell size decreases initially but increases with further increase in strain rate for smaller grain sizes of 34 and 86 Μm while a reverse trend has been observed for larger grain sizes of 105 and 128 Μm. A graph of the cell size strengthening coefficient, k, and the strain rate shows three distinct stages in the curves for different grain sizes.

Keywords

Copper Grain Size Microstructure Mechanical Property Tensile Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Holt, J. Appl. Phys. 41 (1970) 3197.CrossRefGoogle Scholar
  2. 2.
    J. D. Embury, A. S. Keh and R. M. Fisher, Trans. TMS-AIME 236 (1966) 640.Google Scholar
  3. 3.
    F. Chevel and L. Priester, Scripta Metall. 23 (1989) 1871.CrossRefGoogle Scholar
  4. 4.
    D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A113 (1989) 1.CrossRefGoogle Scholar
  5. 5.
    A. S. MALIN and M. HEATHERLY, Metal Sci. (1979) 463.Google Scholar
  6. 6.
    M. R. Staker and D. L. Holt, Acta Metall. 20 (1972) 569.CrossRefGoogle Scholar
  7. 7.
    U. F. Kocks and H. Mecking, ibid. 29 (1981) 1865.CrossRefGoogle Scholar
  8. 8.
    D. Knoeson and S. Kritzinger, South African J. Phys. 5 (1982) 19.Google Scholar
  9. 9.
    Y. Lan, H. J. Klaar and W. Dahl, Metall. Trans. 23A (1992) 537.CrossRefGoogle Scholar
  10. 10.
    K. R. Carson and J. Weertman, Trans. Metall. Soc. AIME 242 (1968) 1413.Google Scholar
  11. 11.
    N. Hansen, Mater. Sci. Technol. 6 (1990) 1039CrossRefGoogle Scholar
  12. 12.
    N. K. Park and B. A. Parker, Mater. Sci. Eng. A113 (1989) 431.CrossRefGoogle Scholar
  13. 13.
    W. D. Nix and D. A. Hughes, ibid A122 (1989) 153.Google Scholar
  14. 14.
    D. J. Hensen and N. Hansen, Acta Metall. 38 (1990) 1369.CrossRefGoogle Scholar
  15. 15.
    C. Tome, G. R. Canova, U. F. Kocks, J. J. Jonas and N. Christodoulou, ibid 32 (1984) 1637.CrossRefGoogle Scholar
  16. 16.
    V. S. Ananthan, T. Leffers and N. Hansen, Scripta Metall. Mater. 25 (1991) 137.CrossRefGoogle Scholar
  17. 17.
    A. W. Thompson, M. I. Baskes and W. F. Flanagan, Acta Metall. 21 (1973) 1017.CrossRefGoogle Scholar
  18. 18.
    A. W. Thompson, Metall Trans. 8A (1977) 833.CrossRefGoogle Scholar
  19. 19.
    D. J. Parry and A. G. Walker, “International Conference on Mechanical Properties of Materials at High Strain Rates” (Institute of Physics, Oxford, 1984 pp. 329–36.Google Scholar
  20. 20.
    S. Mehta and S. K. Varma, J. Mater. Sci. 27 (1992) 3570.CrossRefGoogle Scholar
  21. 21.
    H. Fugita and T. Tabata, Acta Metall. 21 (1973) 355.CrossRefGoogle Scholar
  22. 22.
    J. J. Gracio and J. V. Fernandes Mater. Sci. Eng. A118 (1987) 97.Google Scholar
  23. 23.
    W. H. Gourdin and D. H. Lassila, Acta Metall. 39 (1991) 2337.CrossRefGoogle Scholar
  24. 24.
    D. J. Dingley and D. Mćlean, ibid. 25 (1977) 885.Google Scholar
  25. 25.
    A. W. Thompson, ibid. 25 (1977) 83.CrossRefGoogle Scholar
  26. 26.
    E. P. Abrahamson “Surfaces and interfaces” (University Press, Syracuse, NY, 1968) pp. 262–9.Google Scholar
  27. 27.
    A. Korbel and K. Swiatkowski, J. Met. Sci. 6 (1972) 60.CrossRefGoogle Scholar
  28. 28.
    S. Thiagarajan and S. K. Varma, Metall. Trans. 22A (1990) 258Google Scholar
  29. 29.
    S. Thiagarajan, A. Gurevitch, L. E. Murr, S. K. Varma, W. W. Fisher and A. Advani, in “Modeling the deformation of crystalline solids”, edited by T. C. Lowe, A. D. Rollett, P. S. Follansbee and G. S. Daehn (Minerals, Metals and Materials Society, Warrendale, PA, 1991) pp. 159–71.Google Scholar
  30. 30.
    A. Gurevtich, L. E. Murr, S. K. Varma, S. Thiagarajan and W. W. Fisher, in “Shock-wave and high-strain-rate phenomena in materials”, edited by M. A. Meyers, L. E. Murr and K. P. Staudhammer (Marcel Dekker, New York, NY, 1992) pp. 521–8.Google Scholar
  31. 31.
    S. Thiagarajan and S. K. Varma, J. Mater. Sci. lett. 11 (1992) 692.CrossRefGoogle Scholar
  32. 32.
    D. Sil, J. G. Rao and S. K. Varma, Metall. Trans. 23A (1992) 3166.CrossRefGoogle Scholar
  33. 33.
    D. Sil and S. K. Varma, ibid. 24A (1993) 1153.CrossRefGoogle Scholar
  34. 34.
    J. G. Rao and S. K. Varma, ibid. 24A (1993) 2559.CrossRefGoogle Scholar
  35. 35.
    L. E. Murr and D. Kuhlmann-Wilsdorf, Acta Metall. 26 (1978) 847.CrossRefGoogle Scholar
  36. 36.
    S. K. Varma, J. Kalyanam, L. E. Murr and V. Srinivas, J. Mater. Sci. Lett. 13 (1994) 107.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • H. Shankaranarayan
    • 1
  • S. K. Varma
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringThe University of Texas at El PasoEl PasoUSA

Personalised recommendations