Advertisement

Journal of Materials Science

, Volume 30, Issue 14, pp 3567–3570 | Cite as

Dispersion characteristics of the complex permeability-permittivity of Ni-Zn ferrite-epoxy composites

  • Ki Chul Han
  • Hyung Do Choi
  • Tak Jin Moon
  • Wang Sup Kim
  • Kyung Yong Kim
Papers

Abstract

The effects of volume fraction and particle size of ferrite on the electric and magnetic properties of epoxy composites containing Ni-Zn ferrite were investigated. The composites were prepared by the cement mixed method and shaped as coaxial, toroidal and disc types. The complex permeability and permittivity were measured using an impedance-gain phase analyser (HP4194A) and a network analyser (HP8753C) in the frequency range 1 MHz–5 GHz.

The complex permeability of the composites was found to increase as the ferrite content increased, and was characteristic of the frequency dispersion. A model to describe the frequency dispersion characteristics of the composite, which was a function of the ferrite content, is proposed here. The complex permittivity of the composite was found to be dependent mainly on the volume fraction of the ferrite and was relatively independent of frequency and particle size of the ferrite.

Keywords

Particle Size Permeability Ferrite Epoxy Magnetic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Y. Kim, W. S. Kim, S. M. Kang and H. J. Jung, J. Mater. Sci. 27 (1992) 4741.CrossRefGoogle Scholar
  2. 2.
    K. Y. Kim, W. S. Kim and S. Y. Hong, IEEE Trans Mag. 29 (1993) 2134.CrossRefGoogle Scholar
  3. 3.
    Z. Gigbi and L. Jilken, J. Magn. Magn. 37 (1983) 267.CrossRefGoogle Scholar
  4. 4.
    D. R. Saini, A. V. Shenoy and V. M. Nadkarni, J. Appl. Polym. Sci. 29 (1983) 4123.CrossRefGoogle Scholar
  5. 5.
    Mun fu Tse, ibid. 30 (1985) 3625.CrossRefGoogle Scholar
  6. 6.
    H. C. Kim, P. T. Lee, Y. C. Jung and J. S. Um, Kor. EMC/EMI Soc. 4 (1993) 41.Google Scholar
  7. 7.
    H. T. Johnson and E. G. Visser, IEEE Trans. Mag. 26 (1990) 1987.CrossRefGoogle Scholar
  8. 8.
    P. B. Jana, A. K. Mallick and S. K. De, IEEE Trans. Electromagn. Compat. 34 (1992) 478.CrossRefGoogle Scholar
  9. 9.
    K. Y. Kim, W. S. Kim and J. K. Lee, KITE Rev. 28 (1991) 9.Google Scholar
  10. 10.
    K. Y. Kim, W. S. Kim, H. J. Jung and S. D. Jang, Jap. J. Appl. Phys. 4 (1991) 369.Google Scholar
  11. 11.
    H. Igarashi and K. Okajaki, J. Amer. Ceram. Soc. 60 (1976) 51.CrossRefGoogle Scholar
  12. 12.
    E. G. Visser, J. Magn. Magn. Mater. 81 (1984) 103.Google Scholar
  13. 13.
    J. L. Snoek, Physica 14 (1948) 207.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Ki Chul Han
    • 1
  • Hyung Do Choi
    • 1
  • Tak Jin Moon
    • 1
  • Wang Sup Kim
    • 2
  • Kyung Yong Kim
    • 2
  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulKorea
  2. 2.Division of CeramicsKorea Institute of Science and TechnologyCheongryang, SeoulKorea

Personalised recommendations