Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1884–1889 | Cite as

Synthesis of ultrafine pure and yttria-stabilized hafnia by solid-state reaction at relatively low temperature

  • G. Tilloca
Papers

Abstract

Highly reactive, ultrafine powders of pure hafnia as well as stabilized hafnia (8 mol% yttria) have been synthesized at relatively low temperature (500 °C) by solid-state reaction between standard coarse-grained powders of sodium metaphosphate (NaPO3) and sodium hafnate (Na2HfO3). The reaction product was found to be a two-phase mixture of sodium orthophosphate (Na3PO4) and hafnia. Subsequently, the orthophosphate phase was removed by washing with dilute nitric acid. The as-prepared powders were extremely fine (particle size < 20 nm) and crystalline (cubic fluorite structure). After cold pressing and heating to 1650 °C, the materials retained a fine-grained microstructure. Stable cubic HfO2 with Y2O3 addition (8 mol%) was obtained at a temperature which was not too high (1650 °C).

Keywords

Nitric Acid Fluorite Yttria Sodium Orthophosphate Y2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Lange, H. Shubert, N. Claussen and M. Ruhle, J. Mater. Sci. 21 (1986) 768.CrossRefGoogle Scholar
  2. 2.
    M. K. Dongare and A. P. B. Sinha, ibid. 19 (1984) 49.CrossRefGoogle Scholar
  3. 3.
    Q. Ming Yuan, J. Qitan, J. Yao Shen, X. Hui Zhu and Z. Fang Yang, J. Am. Ceram. Soc. 69 (1986) 268.CrossRefGoogle Scholar
  4. 4.
    P. Miranzo, P. Pena, J. S. Moya and S. Deza, J. Mater. Sci. 20 (1985) 2702.CrossRefGoogle Scholar
  5. 5.
    S. Komaarnehi, R. Roy, E. Breval, M. Ollinen and Y. K. Suwa, Adv. Ceram Mater. 1 (1986) 87.Google Scholar
  6. 6.
    T. Sakuma, Y. Ichi Yoshizawa and H. Mesuto, J. Mater. Sci. 20 (1985) 2399.CrossRefGoogle Scholar
  7. 7.
    A. Harrison, R. Stevens and S. J. Milne, J. Mater. Sci. Lett. 6 (1987) 673.CrossRefGoogle Scholar
  8. 8.
    J. D. Buckley and D. R. Wilder, in “Effects of Cyclic Heating and Thermal Shock on Hafnia Stabilized with Calcia, Magnesia and Yttria”, Technical note: NASA TND-5279, (1969).Google Scholar
  9. 9.
    H. Toraya, Y. Yoshimura and S. Somiya, J. Am. Ceram. Soc. 67 (1984) C-119.Google Scholar
  10. 10.
    K. S. Mazdiyasni and L. M. Brown, ibid. 53 (1970) 1.Google Scholar
  11. 11.
    R. Garvie, J. Phys. Chem. 69 (1965) 1238.CrossRefGoogle Scholar
  12. 12.
    K. S. Mazdiyasni, C. T. Lynch and J. S. Smith, J. Am. Ceram. Soc. 48 (7) (1965) 342.CrossRefGoogle Scholar
  13. 13.
    D. W. Stacy and D. R. Wilder, J. Am. Ceram. Soc. 58 (7–8) (1975) 285.CrossRefGoogle Scholar
  14. 14.
    P. Singh and S. K. Date, J. Mater. Sci. Lett. 6 (1987) 621.CrossRefGoogle Scholar
  15. 15.
    L. M. Brown and K. S. Mazdiyasni, J. Am. Ceram. Soc. 53 (1970) 590.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • G. Tilloca
    • 1
  1. 1.Laboratoire de Science des Matériaux Vitreux, URA 1119Université de Montpellier II, Sciences et Techniques du LanguedocMontpellier CedexFrance

Personalised recommendations