Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1863–1871 | Cite as

Mechanical properties in the initial stage of sintering

  • P. Arató
  • E. Besenyei
  • A. Kele
  • F. Wéber
Papers

Abstract

Silicon nitride-based ceramics with different compositions were sintered in the 60%–90% range of theoretical density. Linear correlations between the apparent density and the modulus of elasticity, the three- and four-point bend strengths or the Vickers hardness, were observed. The slopes of the straight lines were nearly the same for all compositions. Furthermore, the modulus of elasticity, hardness, fracture toughness and strength were calculated as functions of density by modelling the structure as a random arrangement of spheres as suggested by Fischmeister and Arzt. The relationships obtained have been compared with the measured ones.

Keywords

Polymer Silicon Mechanical Property Fracture Toughness Linear Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

average contact area

ac

increase of the area of a crack

A

area of the reference plane

b

size of the critical defect

c

constant in Equation 4

D

density

D0

density before shrinkage

DT

theoretical density

e

direction of macroscopic strain

E

modulus of elasticity

E0

modulus of elasticity of the dense material

f

force loading a contact

f(θ)

projection of force f to e

F

force loading the reference plane

g

geometry parameter in the Griffiths relationship

H

hardness

KIC

fracture toughness

N

number of particles in unit volume

N(θ)

the fraction of N in a given spherical angle

n(θ)

number of particles in the volume around the reference plane

P

porosity

R

initial particle radius

R′

particle radius after fictitious growth

R″

particle radius after redistribution of material

RSQ

shared correlation coefficient

S

surface energy of the defect

ν

vector connecting the centres of neighbouring particles

W

work necessary for increase the area of a crack

Z

average coordination number

Z0

initial coordination number

ɛ

strain

ɛT

strain at theoretical strength

δ

strength

δT

theoretical strength (limit of elasticity)

θ

angle between v and e

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Coble, J. Appl. Phys. 32 (1961) 787.CrossRefGoogle Scholar
  2. 2.
    N. J. Shaw, Powder Met. Int. 21 (1989) 16.Google Scholar
  3. 3.
    H. F. Fischmeister and E. Arzt, Powder Metall. 26 (1983) 82.CrossRefGoogle Scholar
  4. 4.
    L. Coronel, J. P. Jernot and F. Osterstock, J. Mater. Sci. 25 (1990) 4866.CrossRefGoogle Scholar
  5. 5.
    G. Ziegler, J. Heinrich and G. Wötting, ibid. 22 (1987) 3041.CrossRefGoogle Scholar
  6. 6.
    G. C. Kuczynski, Trans. AIME 185 (1949) 169.Google Scholar
  7. 7.
    R. L. Coble, J. Am. Ceram. Soc. 41 (1958) 55.CrossRefGoogle Scholar
  8. 8.
    W. D. Kingery and M. Berg, J. Appl. Phys. 26 (1955) 1205.CrossRefGoogle Scholar
  9. 9.
    G. W. Scherer, J. Am. Ceram. Soc. 74 (1991) 1523.CrossRefGoogle Scholar
  10. 10.
    O. Yeheskel, Y. Gefen and M. Talianker, in “Proceedings of the 3rd International Conference on Isostatic Pressing”, London, 1986 (Metal Powder Report Publishing Ltd., London, 1986) paper 20-1.Google Scholar
  11. 11.
    A. A. Layyous, P. Greil and G. Petzow, in “Proceedings of the 12th Plansee Seminar”, Reutte, 1989, edited by H. Bildstein and H. M. Ortner (Metallwerk Plansee, Reutte, 1989) p. 637.Google Scholar
  12. 12.
    M. Mitomo and S. Uenosono, J. Am. Ceram. Soc. 75 (1992) 103.CrossRefGoogle Scholar
  13. 13.
    T. Ekström and M. Nygren, ibid. 75 (1992) 259.CrossRefGoogle Scholar
  14. 14.
    O. Yeheskel and Y. Gefen, Mater. Sci. Eng. 71 (1985) 95.CrossRefGoogle Scholar
  15. 15.
    D. J. Godfrey, Mater. Sci. Technol. 1 (1985) 510.CrossRefGoogle Scholar
  16. 16.
    J. Heinrich, D. Munz and G. Ziegler, Powder Metall. Int. 14 (1982) 153.Google Scholar
  17. 17.
    R. W. Rice, K. R. McKinney, C. Cm. Wu, S. W. Freiman and W. J. M. Donough, J. Mater. Sci. 20 (1985) 1392.CrossRefGoogle Scholar
  18. 18.
    S. K. Datta, A. K. Mukhopadhyay and D. Chakraborty, Am. Ceram. Soc. Bull. 68 (1989) 2098.Google Scholar
  19. 19.
    A. G. Evans, J. Am. Ceram. Soc. 73 (1990) 187.CrossRefGoogle Scholar
  20. 20.
    W. A. Kaysser, in “Proceedings of the 2nd International Conference on Hot Isostastic Pressing — Theories and Applications”, Gaithersburg, MD, 1989, edited by R. J. Schaefer and M. Linzer (ASM International, Metals Park, 1991) p. 1.Google Scholar
  21. 21.
    C. D. Turner and M. F. Ashby, in “Proceedings of the International Conference on Hot Isostatic Pressing '93”, Antwerp, 1993, edited by L. DeLaey, H. Tas, W. Kaysser (Elsevier, Amsterdam, London, 1994) p. 3.Google Scholar
  22. 22.
    J. C. Wang, J. Mater. Sci. 19 (1984) 801.CrossRefGoogle Scholar
  23. 23.
    C. P. Gazzara and D. R. Messier, Am. Ceram. Soc. Bull. 56 (1977) 777.Google Scholar
  24. 24.
    A. Kele, P. Arató, E. Besenyei, J. Lábár and F. Wéber, in “Hot Isostatic Pressing — Theory and Applications”, Proceedings of the 3rd International Conference, Osaka, 1991, edited by M. Koizumi (Elsevier, London, New York, 1992) p. 85.Google Scholar
  25. 25.
    P. Arató, L. Bartha, A. Kühne and F. Thümmler, Ber. Dtsch. Keram. Ges. 69 (1992) 383.Google Scholar
  26. 26.
    O. N. Grigor' Ev, G. N. Savranskaya, P. Arató and E. Besenyei, unpublished (1991).Google Scholar
  27. 27.
    P. F. Becher, J. Am. Ceram. Soc. 74 (1991) 255.CrossRefGoogle Scholar
  28. 28.
    K. Hayashi and M. Kosakai, in “Proceedings of 12th Plansee Seminar”, Reutte, 1989, edited by H. Bildstein and H. M. Ortner (Metallwerk Plansee, Reutte, 1989) p. 747.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. Arató
    • 1
  • E. Besenyei
    • 1
  • A. Kele
    • 1
  • F. Wéber
    • 1
  1. 1.Research Institute for Technical PhysicsBudapestHungary

Personalised recommendations