Advertisement

Journal of Materials Science

, Volume 30, Issue 7, pp 1854–1862 | Cite as

The effect of ceria co-doping on chemical stability and fracture toughness of Y-TZP

  • M. M. R. Boutz
  • A. J. A. Winnubst
  • B. Van Langerak
  • R. J. M. Olde Scholtenhuis
  • K. Kreuwel
  • A. J. Burggraaf
Papers

Abstract

The fracture toughness and ageing resistance of yttria, ceria-stabilized tetragonal zirconia polycrystals (Y, Ce-TZP) were evaluated as a function of grain size and ceria content. Very fine grained, fully dense materials could be produced by sinter forging at relatively low temperatures (1150–1200 °C). The ageing resistance in hot water (185 °C) of 2 mol% Y2O3-stabilized TZP is strongly enhanced by alloying with ceria. The ceria content necessary to avoid degradation completely, decreases with grain size. The toughness of fully dense Y, Ce-TZP is 7–9 MPa m1/2 for grain sizes down to 0.2 μm. No or very little transformation took place during fracturing and no clear variation with grain size was observed for the toughness at grain sizes up to 0.8 μm. Reversible transformation and crack deflection may explain the observed toughness values.

Keywords

Polymer Grain Size Zirconia Fracture Toughness Ceria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Tsukuma, Y. Kubota and T. Tsukidate, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Rühle and A. Heuer (American Ceramic Society, Columbus, OH, 1984) p. 382.Google Scholar
  2. 2.
    J. Wang, W. M. Rainforth, I. Wadsworth and R. Stevens, J. Eur. Ceram. Soc. 10 (1992) 21.CrossRefGoogle Scholar
  3. 3.
    T. Sato and M. Shimada, Am. Ceram. Soc. Bull. 64 (1985) 1382.Google Scholar
  4. 4.
    J. Wang, X. H. Zheng and R. Stevens, J. Mater. Sci. 27 (1992) 5348.CrossRefGoogle Scholar
  5. 5.
    M. M. R. Boutz, A. J. A. Winnubst and A. J. Burggraaf, J. Eur. Ceram. Soc. 13 (1994) 89.CrossRefGoogle Scholar
  6. 6.
    M. M. R. Boutz, A. J. A. Winnubst, A. J. Burggraaf, M. Nauer and C. Carry, J. Am. Ceram. Soc., in press.Google Scholar
  7. 7.
    J. J. Swab, J. Mater. Sci. 26 (1991) 6706.CrossRefGoogle Scholar
  8. 8.
    T. Sato and M. Shimada, ibid. 20 (1985) 3988.CrossRefGoogle Scholar
  9. 9.
    Idem J. Am. Ceram. Soc. 68 (1985) 356.CrossRefGoogle Scholar
  10. 10.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, ibid. 68 (1985) C-320.CrossRefGoogle Scholar
  11. 11.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, in “High Tech Ceramics”, edited by P. Vincenzini (Elsevier Science, Amsterdam, 1987) p. 281.Google Scholar
  12. 12.
    H. Lu and S. Chen, J. Am. Ceram. Soc. 70 (1987) 537.CrossRefGoogle Scholar
  13. 13.
    A. J. A. Winnubst and A. J. Burggraaf, in “Advances in Ceramics”, Vol. 24A, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (American Ceramic Society, Westerville, OH, 1988) p. 39.Google Scholar
  14. 14.
    T. Sato, S. Ohtaki and M. Shimada, J. Mater. Sci. 20 (1985) 1466.CrossRefGoogle Scholar
  15. 15.
    M. Watanabe, S. Iio and I. Fukuura, ibid. 19 (1984) 391.Google Scholar
  16. 16.
    D. J. Green, R. H. J. Hannink and M. V. Swain, in “Transformation Toughening of Ceramics” (CRC Press, Boca Raton, FL, 1989) Ch. 3, p. 57.Google Scholar
  17. 17.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, Int. J. High Technol. Ceram. 2 (1986) 167.CrossRefGoogle Scholar
  18. 18.
    M. T. Hernandez, J. R. Jurado and P. Duran, J. Am. Ceram. Soc. 74 (1991) 1254.CrossRefGoogle Scholar
  19. 19.
    W. F. M. Groot Zevert, A. J. A. Winnubst, G. S. A. M. Theunissen and A. J. Burggraaf, J. Mater. Sci. 25 (1990) 3449.CrossRefGoogle Scholar
  20. 20.
    R. Raj, J. Am. Ceram. Soc. 65 (1982) C-46.CrossRefGoogle Scholar
  21. 21.
    H. Toraya, M. Yoshimura and S. Somiya, ibid. 67 (1984) C-119.Google Scholar
  22. 22.
    A. W. Paterson and R. Stevens, Int. J. High Technol. Ceram. 2 (1986) 135.CrossRefGoogle Scholar
  23. 23.
    G. S. A. M. Theunissen, J. S. Bouma, A. J. A. Winnubst and A. J. Burggraaf, J. Mater. Sci. 27 (1992) 4429.CrossRefGoogle Scholar
  24. 24.
    K. Tsukuma and M. Shimada, ibid. 20 (1985) 1178.CrossRefGoogle Scholar
  25. 25.
    M. Nauer, Thesis 996, EPF Lausanne, Switzerland (1992) Ch. 2.Google Scholar
  26. 26.
    M. S. Dadkhah, D. B. Marshall, W. L. Morris and B. N. Cox, J. Am. Ceram. Soc. 74 (1991) 584.CrossRefGoogle Scholar
  27. 27.
    K. Venkatachari and R. Raj, ibid. 65 (1987) 514.CrossRefGoogle Scholar
  28. 28.
    F. F. Lange, G. L. Dunlop and B. I. Davis, ibid. 69 (1986) 237.CrossRefGoogle Scholar
  29. 29.
    M. Yoshimura, Am. Ceram. Soc. Bull. 67 (1988) 1950.Google Scholar
  30. 30.
    O. Kruse, H. D. Carstan Jen, P. Kontouros, H. Schubert and G. Petzow, in “Science and Technology of Zirconia V”, edited by S. P. S. Badwal, M. J. Bannistor and R. H. J. Hannink (Techomic Publ. Co., Lancaster, PA, 1993) p. 163.Google Scholar
  31. 31.
    G. S. A. M. Theunissen, A. J. A. Winnubst and A. J. Burggraaf, J. Eur. Ceram. Soc. 9 (1992) 251.CrossRefGoogle Scholar
  32. 32.
    S. Schmauder and H. Schubert, J. Am. Ceram. Soc. 69 (1986) 534.CrossRefGoogle Scholar
  33. 33.
    H. Schubert, ibid. 69 (1986) 270.CrossRefGoogle Scholar
  34. 34.
    P. Scardi, R. Di Maggio and L. Lutterotti, ibid. 75 (1992) 2828.CrossRefGoogle Scholar
  35. 35.
    P. F. Becher and M. V. Swain, ibid. 75 (1992) 493.CrossRefGoogle Scholar
  36. 36.
    M. M. R. Boutz, A. J. A. Winnubst, A. J. Burggraaf, M. Nauer and C. Carry, J. Eur. Ceram. Soc. 13 (1994) 103.CrossRefGoogle Scholar
  37. 37.
    M. L. Mecartney, J. Am. Ceram. Soc. 70 (1987) 54.CrossRefGoogle Scholar
  38. 38.
    A. E. Hughes, F. T. Ciacchi and S. P. S. Badwal, in “Science and Technology of Zirconia V”, edited by S. P. S. Badwal, M. J. Bannistor and R. H. J. Hannink (Techomic Publ. Co., Lancaster, PA, 1993) p. 152.Google Scholar
  39. 39.
    G. S. A. M. Theunissen, A. J. A. Winnubst and A. J. Burggraaf, J. Mater. Sci. 27 (1992) 5057.CrossRefGoogle Scholar
  40. 40.
    G. M. Ingo, G. Mattogno, N. Zaccheti, P. Scardi and R. Dal Maschio, J. Mater. Sci. Lett. 10 (1991) 320.CrossRefGoogle Scholar
  41. 41.
    R. W. Rice, S. W. Freiman, R. C. Pohanka, J. J. Mecholsky Jr and C. C. Wu, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 849.Google Scholar
  42. 42.
    A. J. A. Winnubst, K. Keizer and A. J. Burggraaf, J. Mater. Sci. 18 (1983) 1958.CrossRefGoogle Scholar
  43. 43.
    S. Sakaguchi, N. Murayama, Y. Kodama and F. Wakai, J. Mater. Sci. Lett. 10 (1991) 282.CrossRefGoogle Scholar
  44. 44.
    J. G. Duh and J. U. Wan, J. Mater. Sci. 27 (1992) 6197.CrossRefGoogle Scholar
  45. 45.
    J. Wang, M. Rainforth and R. Stevens, Br. Ceram. Trans. J. 88 (1989) 1.Google Scholar
  46. 46.
    A. G. Evans and R. M. Cannon, Acta Metall. 34 (1986) 761.CrossRefGoogle Scholar
  47. 47.
    R. McMeeking and A. G. Evans, J. Am. Ceram. Soc. 65 (1982) 242.CrossRefGoogle Scholar
  48. 48.
    A. Heuer, M. Rühle and D. B. Marshall, ibid. 73 (1990) 1084.CrossRefGoogle Scholar
  49. 49.
    R. A. Cutler, J. R. Reynolds and A. Jones, ibid. 75 (1992) 2173.CrossRefGoogle Scholar
  50. 50.
    A. V. Virkar and R. L. Matsumoto, in “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (The American Ceramic Society, Columbus, OH, 1988) p. 653.Google Scholar
  51. 51.
    K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 565.CrossRefGoogle Scholar
  52. 52.
    A. Krell and P. Blank, J. Eur. Ceram. Soc. 9 (1992) 309.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. M. R. Boutz
    • 1
  • A. J. A. Winnubst
    • 1
  • B. Van Langerak
    • 1
  • R. J. M. Olde Scholtenhuis
    • 1
  • K. Kreuwel
    • 1
  • A. J. Burggraaf
    • 1
  1. 1.Faculty of Chemical Technology, Laboratory for Inorganic Chemistry, Materials Science and CatalysisUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations